Direct observation of first oxidation products from the OH + isoprene reaction for pristine environmental conditions

T. Berndt¹, N. Hyttinen², H. Herrmann¹ and A. Hansel³

¹ Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research, TROPOS, 04318 Leipzig, Germany.

²Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, 00014 Helsinki, Finland.

³Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria.

Isoprene, C_5H_8 , inserts about half of the non-methane carbon flux of biogenic origin into the atmosphere. Its degradation is mainly initiated by the reaction with OH radicals. The formation of reactive intermediates and corresponding closed-shell products from the OH + isoprene reaction for low NO/HO₂ conditions is experimentally shown. Detailed product analysis has been achieved by mass spectrometric techniques using 6 different ionization schemes. Quantum chemical calculations support the usefulness of applied ionization schemes. Observed RO₂ radicals are the isomeric HO-C₅H₈O₂ radicals and their isomerization products HO-C₅H₈(O₂)O₂ and HO-C₅H₈(O₂)₂O₂ in traces. Main closed-shell products from unimolecular RO₂ reactions are hydroperoxy aldehydes, "HPALDs", and smaller yield products with the composition C₅H₈O₄ and C₄H₈O₅.