Formation of highly oxidized molecules from cycloalkene ozonolysis observed in free-jet experiments

Torsten Berndt

Leibniz-Institute for Tropospheric Research, TROPOS, 04318 Leipzig, Germany.

The gas-phase reaction of ozone with C₅-C₈ cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and $T = 297 \pm 1$ K. Highly oxidized RO₂ radicals with at least 5 O-atoms in the molecule and their subsequent reaction products were detected by means of NO₃⁻-CI-APi-TOF mass spectrometry. Formation of these RO₂ radicals can be explained via an autoxidation mechanism, ROO \rightarrow QOOH and subsequently QOOH + O₂ \rightarrow R'OO, starting preferentially from non-thermalized Criegee Intermediates after splitting-off an OH radical. The formation process is oxygen-limited even for close to atmospheric conditions. The total molar yield of highly oxidized products (predominantly RO₂ radicals) from C₅-C₈ cycloalkenes in air is 5.5 - 6.1 % affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene, O,O- $C_6H_7(OOH)_2O_2$, determination of the rate coefficients for the reaction with NO, NO₂ and SO₂ yielded $(1.9 \pm 0.1) \times 10^{-11}$, $(1.0 \pm 0.1) \times 10^{-12}$ and $< 10^{-14}$ cm³ molecule⁻¹ s⁻¹, respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, $RO_2 + R'O_2 \rightarrow ROOR' + O_2$, which allows to acquire information on peroxy radicals not directly measureable with the ionization technique applied here. Additional experiments using CH₃COO⁻(cluster) as the charger ion confirm conclusively the detection of highly oxidized RO₂ radicals and closed shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis.