H₂SO₄ formation from the gas-phase reaction of stabilized Criegee Intermediates with SO₂: Influence of water vapour content and temperature

Torsten Berndt^{a*}, Tuija Jokinen^{a,b}, Mikko Sipilä^b, Roy L. Mauldin III^b, Frank Stratmann^a, Heikki Junninen^b, Markku Kulmala^b, and Hartmut Herrmann^a ^a Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany ^b Department of Physics, University of Helsinki, Finland

 H_2SO_4 represents a key substance in the process of atmospheric nucleation. The importance of gas-phase products from olefin ozonolysis other than OH radicals, most likely stabilized Criegee Intermediates (sCI), for the process of atmospheric SO₂ oxidation to H_2SO_4 has recently been discovered.

Subject of this work are investigations on H_2SO_4 formation as a function of water vapour content (RH = 2 - 65 %) and temperature (278 - 343 K) starting from the ozonolysis of trans-2-butene and 2,3-dimethyl-2-butene (TME) forming acetaldehyde oxide and acetone oxide, respectively. Measurements have been conducted in an atmospheric pressure flow tube using NO₃⁻-CI-APi-TOF mass spectrometry for H_2SO_4 detection. Initial reactant concentrations were close to atmospheric levels: trans-2-butene: $4.0 \cdot 10^{10}$, 2,3-dimethyl-2-butene (TME): $1.0 \cdot 10^{10}$, O₃: (2.0 - 2.2) $\cdot 10^{11}$ molecule cm⁻³.

The sCl yields derived from H_2SO_4 measurements at 293 K were 0.49 ± 0.22 for acetaldehyde oxide from trans-2-butene ozonolysis and 0.45 ± 0.20 for acetone oxide from TME ozonolysis. Our findings indicate a H_2SO_4 yield from sCl + SO₂ of unity or close to unity.

The figures show normalized H₂SO₄ concentrations as a function of SO₂ for three different relative humidities (RH). The deduced rate coefficient ratio for the reaction of sCI with H₂O and SO₂, k(sCI+H₂O) / k(sCI+SO₂), was found to be strongly dependent on the structure of the Criegee Intermediate, for acetaldehyde oxide at 293 K: (8.8 ± 0.4)·10⁻⁵ (syn- and anti-conformer in total) and for acetone oxide: < $4 \cdot 10^{-6}$. H₂SO₄ formation from sCI was pushed back with rising temperature most probably due to an enhancement of sCI decomposition. The ratio k(sCI+SO₂) / k(dec.) decreased by a factor of 34 (acetone oxide) increasing the temperature from 278 to 343 K. In the case of acetaldehyde oxide the temperature effect is less pronounced. The relevance of atmospheric H₂SO₄ formation via sCI + SO₂ is discussed in dependence on the structure of the Criegee Intermediate.