The role of NH₃ and amines in atmospheric H₂SO₄/H₂O nucleation

Berndt, Torsten¹, Stratmann, Frank¹, Sipilä, Mikko^{2,3}, Vanhanen, Joonas², Petäjä, Tuukka², Grüner, Achim¹, Spindler, Gerald¹ and Kulmala, Markku^{2,4}

¹Leibniz-Institut für Troposphärenforschung e.V., Leipzig, Germany ²Department of Physics, University of Helsinki, Finland ³Helsinki Institute of Physics, Helsinki, Finland ⁴Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden

Keywords: nucleation, sulphuric acid, ammonia, amine.

In the lower troposphere, new particle formation is strongly connected to the occurrence of H₂SO₄ with concentrations of about 10^5 - 10^7 molecule cm⁻³ and the nucleation rate of new particles can be described by a power law equation for H_2SO_4 with an exponent in the range of 1 - 2 (Riipinen et al., 2007). Recently, as a result of laboratory studies, nucleation was observed for nearly atmospheric concentrations of H₂SO₄ and also the dependence of nucleation rate on H2SO4 concentration was adequately reproduced (Sipilä et al., 2010). NH₃ is believed to represent a third body in the atmospheric nucleation process and theoretical studies proposed that atmospheric mixing ratios of NH₃ at pptv-level can stabilize the critical cluster (Coffman and Hegg, 1995). As a result of quantum chemical calculations, Kurten et al. (2008) concluded that amines can more efficiently support the nucleation process than NH₃.

In the present study, the nucleation enhancing effect of NH3 and a series of selected amines has been studied experimentally in the atmospheric flow tube IfT-LFT (Berndt et al., 2005). Addition of $1.2 \cdot 10^{11}$ or $1.2 \cdot 10^{12}$ molecule cm⁻³ of NH₃ (NH₃ background $< 2.5 \cdot 10^9$ molecule cm⁻³) revealed that NH₃ has a promoting effect on both nucleation rate and particle growth, cf. Fig.1. The enhancing effect was found to be more pronounced under relatively dry conditions. Explaining this behaviour, it can be speculated that there is probably a competition of H₂O vapour (or any H₂O clusters) and NH₃ in the process of critical cluster stabilization. Note, NH3 levels of $1.2 \cdot 10^{11}$ or $1.2 \cdot 10^{12}$ molecule cm⁻³ stand for atmospheric peak concentrations. Beside the NH₃ data, in Fig.1 the nucleation enhancing effect by tertbutylamine is demonstrated for relatively high amine concentrations being representative for areas with intensive stock farming. Additions of $1.5 \cdot 10^{11}$ or $7.5 \cdot 10^{11}$ molecule cm⁻³ of tert-butylamine show a much stronger effect on nucleation and growth than the comparable NH₃ addition. This behaviour is qualitatively in line with the predictions given by Kurten et al. (2008).

From these measurements it can be concluded that in the "base-polluted" atmosphere (mainly in areas with intensive agricultural activities) the nucleation rate can be significantly higher than for the "clean" atmospheric case (relatively low NH₃ and amine concentrations).

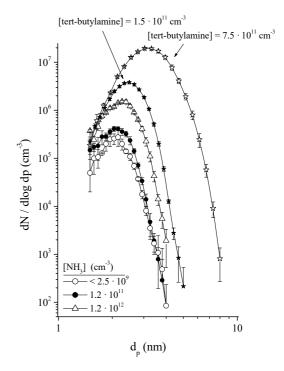


Fig.1. Size distributions for different NH₃ and amine additions, RH:47%; [H₂SO₄] = $2 \cdot 10^8$ molecule cm⁻³.

- Berndt, T., Böge, O., Stratmann, F., Heintzenberg, J. & Kulmala, M. (2005). *Science*, 307, 698.
- Coffman, D. J. & Hegg, D.A., (1995). J. Geophys. Res., 100, 7147.
- Kurten, T, Loukonen, V., Vehkamäki, H. & Kulmala, M. (2008). *Atmos. Chem. Phys.*, 8, 4095.
- Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, F., Dal Maso, M., Birmili, W., Saarnio, K., Teinilä, K., Kerminen, V.-M., Laaksonen, A. & Lehtinen, K.E.J., (2007) Atmos. Chem. Phys. 7, 1899.
- Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin III, R.L., Hyvärinen, A.-P., Lihavainen, H. & Kulmala, M. (2010). Science, 327, (in press).