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Introduction

Secondary organic aerosol (SOA) makes up
a large part of the total atmospheric aerosol,

deliquesced particles

having a strong influence on Earth’s radiation 2% . ngj&.ﬂ;ﬁ?‘”
budget and acting as cloud condensation t "\\

nuclei. Especially fine particulate matter (i.e., w %@04\\
PM, ), which affects local air quality and can g, 2

ST sﬂ&@ %{,
have adverse effects on human health, show phatolysis; &y KNl é\
a high fraction of OAl'L In recent years,
progress has been made to understand the
SOA formation potential of gas-phase
precursors. The formation of SOA in cloud
and aerosol water, however, has not been

studied as comprehensively.

Fig. 1:

Aqueous phase Bulk reactor experiments

OH scavenging and quantification

* V=250mL
* Temperature-controlled
* Continuously stirred

* Reaction times up to 100 h

* Solution of 1,2-ISOPOOH in
MilliQ Water (~0.01 mmol L?)

Fig. 2: Schematic experimental setup for aqueous-
phase with BULK-reactor.

During the course of the investigated reaction, OH radicals transform
deuterated isopropanol to deuterated acetone, which was derivatized with
0-(2,3,4,5,6)-pentaflourobenzyl)-hydroxylamine hydrochloride (PFPHA). The
resulting imine can be quantified via GC-MS. To avoid further reaction during
derivatization, ethyleneglycol is added in excess during sampling (Fig.3).
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Fig. 3: OH scavenging reactions during the course of the experiment (above) and after sampling
(below) and derivatization agent 0-(2,3,4,5,6)-pentaflourobenzyl)-hydroxylamine
hydrochloride (right).

Thermic decay of 1,2-ISOPOOH

The quantification of acetone-d6 via GC-MS was utilized to monitor the thermic
decay of 1,2-ISOPOOH under variation of temperature.
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et Fig.4: Acetene-dd farmation via OH radicals during the thermic decay experiments (left) and
Lt % corresponding Arrhenius parameters of the homolytic bond cleavage (right).
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. < The thermic decay of 1,2-ISOPOOH was found to be a comparatively slow
%, process. Although experiments were performed over the course of up to 100 h,

v’ fraction of OH radicals, other reaction pathways might be more important for'

‘ ;; atmospheric oxidation, such as Fenton-type reactions, photolysis or the react|on 2
;.‘i‘ﬂ with sulfur (IV)

Overview of atmospheric processes involving isoprene oxidation.

Quantum yield and UV-VIS spectrum

.. the maximum conversion rate did not surpass 6% of the total ISOPOOH
concentration. Consequently, the Arrhenius parameters were determined for the 'y
homolytic bond cleavage of 1,2-ISOPOOH. As the thermic decay yields a small
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Isoprene is the most abundant non-methane biogenic * °
cloud droplets q q n q .
= volatile organic compound in the atmosphere. Deciduous
squesusphase 1 Plants, such as trees and shrubs emit estimated 600 Tg
yr''on a global scalel?, which is about 5 times the sum of
all other terpene emissions combined. Isoprene and
isoprene-derived oxidation products were disregarded as
SOA-precursor compounds for a long time. In the last
two decades, however, it was shown that gas-phase
isoprene oxidation especially in rural areas leads to
products that significantly contribute to the formation of
SOARBL In the present work, aqueous-phase reactions of
an synthetic standard of isoprene-derived hydroxy
hydroperoxide has been investigated.
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Fig. 5: Schematic experimental setup for Laser Flash Photolysis Laser Long Path Absorption
setup (left) and UV-VIS spectrum of 1,2-ISOPOOH (red curve) and (SCN)," (blue curve)

* Photolysis by Excimer laser A =308 nm
* CW- Analysis laser A =473 nm

« System characterized by photolysis of
equimolar H,0, solution

Ewc=70.6 £ 2.2 m)
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Fig. 6: Structure of 1,2-ISOPOOH and reactions
of SCN- with OH radicals.

“OH + SCN™= SCNOH * ~

SCNOH"~=SCN"+ OH™

SCN"+ SCN™ = (SCN)," ~
(SCN),"™+ (SCN)," ~ = products

The formation of SCNOH * ~ was used to scavenge the OH radicals from 1,2-
ISOPOOH photolysis. The absorbance of (SCN),” ~ was monitored over the
course of 2 ps after the pulsed photolysis. The maximum absorbance was
used to calculate the quantum yield with H,O, as a reference system.

D, 51500001 = 0-31 = 0.01

Aqueous S(IV) oxidation with 1,2-ISOPOOH

* Reaction of 1,2-ISOPOOH with . 001

Na,SO; in aqueous solution = 0.005 4 .

investigated g :‘ G i
* Acidity controlled pH = 4 £ poos [t : A T
* Fixation of HSO; with HCHO g om .

under formation of Z oos

hydoxymethylsulfonate (HMSA)
upon sampling .

ratio ISOPOOH/sulfite

sulfate formation sulfite consumption

-+ Linear (sulfate formation) Linear (sulfite consumption)

* Analysis of both HSO,  and SO,*

via ion chromatography (IC) Fig. 7:

First order rate constants of 5 oxidation
experiments of HSO," with 1,2-ISOPOOH.

* Preliminary second order rate constant of k,,q=483 L mol-! s
* Previously reported value: 1000 = 300 mol L1 s1[5]
-> Further investigations needed to improve reproducibility.
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