Temporal variation of the chemical composition of Asian dust at Tajikistan

K. Wadinga Fomba1, K. Müller1, J. Hofer1, D. Althausen1, H. Herrmann1
A. Makhmudov2, S. Abdullaev2
1 Leibniz-Institute for Tropospheric Research, Permoser str. 15, 04318 Leipzig, Germany
2 Academy of Sciences of Republic of Tajikistan, Physical technical Institute, Department of Physical atmosphere, Ayni str.299/1,734063,Dushanbe, Tajikistan
*Email: fomba@tropos.de

Introduction

Mineral dust is a source of ambient pollution. At Dushanbe, mineral dust originating from desert regions such as Karakum, Dawir, Lut is often observed at relatively high concentrations. During the CADEX experiment, the chemical composition of mineral dust was characterized to determine the sources and mass concentration levels of important aerosol chemical components such as, aerosol trace metals, elemental and organic carbon, inorganic and organic ions.

Methods

A high volume sampler (Digitel DHA-80) was used to collect aerosol samples in a 48 h routine on quartz fiber filters. The samples were analyzed for soluble ions (via IC), elemental and organic carbon (thermal desorption) as well as trace metals (via Total Reflection X-ray Fluorescence, TXRF) and organic compounds (GC-MS).

Results

Fig. 1: Temporal variation of mineral dust concentration at Dushanbe from March 2015 to February 2016. Peaks indicated days of dust storms.

Fig. 2: Temporal variation of ambient temperature and aerosol mass/mineral dust ratio. High aerosol mass/mineral dust ratio was observed when temperatures fell below 10°C.

Fig. 3: Aerosol chemical composition during days of a) less dust (31.03.15) and b) high dust (21.07.15) loadings. Sulfate, nitrate and ammonium were the main ions.

Conclusions

- Strong seasonal patterns of aerosol chemical components were observed
- Coal combustion, traffic, metallurgical industry, long range transport and mineral dust were the main sources of emissions
- Mineral dust at Dushanbe is more Ca and Fe-rich in comparison to Saharan dust

Asian dust at Dushanbe shows higher iron and calcium content in comparison to Saharan dust observed at Cape Verde. This indicates a possible difference in the mineralogy of the dust sources in these regions.