

European NOx-intercomparison at the observatory Hohenpeißenberg 10.-21. October 2016

Holla, R.; Kubistin, D.; Plass-Dülmer, C.; Englert, J.; Weyrauch, D.⁽¹⁾; Vokoun, M.; Silhavy, J. ⁽²⁾; Cristofanelli, P.; Calzolari F. ⁽³⁾; Walden, J.; Monto, M. ⁽⁴⁾; Berkes, F.; Houben, N. ⁽⁵⁾; Pöhler, D.; Lutz, E. ⁽⁶⁾; Putaud, J.; Lagler, F. ⁽⁷⁾; Tison, E.; Salameh, T., Sauvage, S.⁽⁸⁾; Gros, V.; Bonnaire, N.⁽⁹⁾; Spindler, G.; Rabe, R.⁽¹⁰⁾, MOHp side-by-side-intercomparison NO_x -ACTRIS Team ⁽¹⁾ and Rohrer, Franz ⁽¹¹⁾

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

6

A total number of 11 European laboratories (6 countries, 17 instruments) participated in the ACTRIS NO_x side-by-side (s-b-s) intercomparison activity organised and hosted by DWD Hohenpeissenberg in October 2016. All instruments were connected to one common ring manifold supplied either with synthetic mixtures or ambient air. FZ-Juelich (WCC-NO_x) acted as reference laboratory at the end of the manifold. Various synthetic mixtures with mixing ratios between zero and 40 ppb for NO and NO₂, as well as ambient air, encountered a wide range from clean (<0.5 ppb NO_x) to polluted (several 10 ppb NO_x) conditions. Interferences due to NO_v species, alkenes and glyoxal were tested. Most of the participating instruments used chemiluminescence detection (CLD) for NO coupled with blue-light converter (BLC) for NO₂, or molybdenum converter for NO₂+. Additionally, instruments took part using optical techniques with NO₂ & NO iterative cavity enhanced DOAS (ICAD) and NO₂ cavity attenuated phase shift (CAPS).

Institute		Port	CLD-BLC	CLD-Mo	CLD-Au	CAPS	ICAD
HPB	DE	1a	2		1	1	
IAGOS	DE	2a	1				
CHMI	CZ	2a		2			
MD	FR	2b		1		1	
SIRTA	FR	4b	1				
IPR	EU	5b		1		1	
FMI	FI	6b	1				
TROPOS	DE	7b	1				
IUP-HD	DE	8b					1
ISAC	IT	10b	1				
FZJ	DE	11b	1				
total: 11	6		8	4	1	3	1 / 17

CLD: ChemiLuminescence Detector Gold converter Au: BLC: Blue Light Converter Mo: Molybdenum converter

Figure 1: Stability of the instruments sensitivities and offsets over the whole campaign. Each instrument was calibrated with its own station calibration device using a common NO standard and the same zero air supply. After these individual calibrations the sensitivity change was tracked frequently by using a constant concentration of NO (30 ppb) and dry air over the common ring manifold. a) The ratios of individual sensitivities and the sensitivity of WCC/FZJ reference instrument over 10 days deviated about ±10 % under dry zero air conditions. b) The absolute offsets deviated about several hundred ppt under dry zero air conditions.

Results

- Participant calibrations deviate up to 10% from reference in dry conditions (Figure 1).
- A substantial part showed changes in sensitivity larger than the DQO.
- Dilution systems are more critical in calibration than standard gases.
- Instruments based on the same technique show differences.
- HONO causes significant interferences (Figure 3 and table) for all instruments (without Nafion) but the ICAD. Either NO or NO₂ channel is affected to a larger extent depending on the presence of a Nafion dryer.
- Nafion dryers convert HONO to NO.
- HONO interferences increase with higher NO₂-to-NO converter efficiencies.
- Molybdenum converters show unexpected water vapour artefacts for

Figure 2: Comparison of the instruments during two days of ambient air measurements. The plots show the slopes of the correlations between individual instruments and WCC/FZJ reference instrument. Blue: without corrections applied, green: with water vapour corrections applied, red: both water and O_3 correction applied. Applying the corrections reduces the standard deviation between all instruments by a factor of three.

ICAD is not sensitive to HONO and can be regarded as a reference ISA for NO₂. FZJ CLD shows significant interferences of 10% of HONO. $_{\rm N}$ The time decay is due to the depletion of the HONO source.

Data Quality Objectives		
(DQO) as defined in the	uncertainty	NO: 8 pmol/mol or 3%
GAW Measurement	(1 hour, 2σ)²	NO ₂ :15 pmol/mol or 5%
Guidelines		² which ever is the larger

AC	-1.1		
D_42itl	90.0	-	Мо
D_AS32M	0.4	-	CAPS, Nafion
RTA	7.6*		Nafion
OPOS	9.4		

* 30-50% of HONO appear as NO and 0-10% as NO₂ by the NAFION dryer

⁽¹⁾Meteorological Observatory Hohenpeissenberg (HPB),

⁽²⁾Czech Hydrometeorological Institute (CHMI), ⁽³⁾Institute for Atmospheric Science and Climatology (ISAC), ⁽⁴⁾Finnish Meteorological Institute (FMI), ⁽⁵⁾Forschungszentrum Jülich GmbH (IAGOS), ⁽⁶⁾Institute of Environmental Physics Heidelberg (IUP-HD), ⁽⁷⁾Joint Research Center of the European

Commission (IPR), ⁽⁸⁾IMT Lille-Douai (MD),

⁽⁹⁾Laboratoire des Sciences du Climat et de l'Environnement (SIRTA), ⁽¹⁰⁾Leibniz-Institute for Tropospheric Research (TROPOS), ⁽¹¹⁾ Forschungszentrum Jülich GmbH (FZJ)

large artificial temporal gradients of humidity.

The data quality objectives for NO and NO₂ are not met at current state. \bullet

Outlook

- Achieving data quality objectives requires further development of the measurement systems and QA/QC.
- Establishment of a round robin system = a standard cylinder spiked with CO_2 and a Picarro to control dilution.
- Further analyses to identify critical components.
- Potential night time offsets of NO caused by HONO will need to be taken into account.
- Improve Measurement Guidelines (D 3.17).

Meteorologisches Observatorium Hohenpeißenberg **Deutscher Wetterdienst** Albin-Schwaiger- Weg 10 82383 Hohenpeißenberg

Bundesministerium für Verkehr, Bau und Stadtentwicklung

Robert.Holla@dwd.de