Kinetics of the unimolecular reaction of CH, OO and its reactions with the water monomer, acetaldehyde and acetone at atmospheric conditions

Torsten Berndt¹, Ralf Kaethner¹, Jens Voigtländer¹, Frank Stratmann¹, Mark Pfeifle², Patrick Reichle², Matthias Olzmann², Mikko Sipilä³, Markku Kulmala³, Hartmut Herrmann¹

Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

2 Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany.

3 Department of Physics, University of Helsinki, Helsinki 00014, Finland.

Karlsruher Institut für Technologie

contact: torsten.berndt@tropos.de

Motivation

Stabilized Criegee Intermediates (sCI) have been identified as oxidants of atmospheric trace gases such as SO₂, NO₂, carboxylic acids or carbonyls. The atmospheric sCI concentrations, and accordingly their importance for trace gas oxidation, are controlled by the rate of the most important loss processes, very likely the unimolecular reactions and the reaction with water vapour (monomer and dimer) ubiquitously present in high concentrations in the troposphere.

For a reliable assessment of the importance of sCI reactions with SO₂, reaction (1), or other trace gases, the main loss processes in the atmosphere that control atmospheric sCI levels, must be accurately characterized. Most important loss paths are assumed to be the reaction with water vapour (monomer and/or dimer), reactions (2a) and (2b), and the unimolecular sCI reaction (decomposition forming dioxirane, OH and others), reaction (3):

Experiment

Free-jet flow system

$CH_{2}OO + SO_{2}$	\rightarrow	$CH_{2}O + SO_{3}$	(1)
CH ₂ OO + H ₂ O	\rightarrow	products	(28
$CH_{2}OO + (H_{2}O)_{2}$	\rightarrow	products	(21
	\rightarrow	dioxirane, OH,	(3)

Recently, the reaction of CH₂OO with the water dimer has been identified as an important atmospheric sink of CH₂OO.^{1,2} It is the subject of this work to investigate the kinetics of the unimolecular reaction of CH₂OO and the bimolecular reaction with the water monomer under atmospheric conditions. CH₂OO is produced via the reaction of ozone with ethene:

> $O_3 + C_2H_4 \rightarrow y CH_2OO + ...$ (4)

By performing kinetic measurements of the reaction of CH₂OO with acetaldehyde and acetone, the suitability of the chosen experimental approach (free-jet flow system) for the determination of absolute rate coefficients of sCI reactions is demonstrated.

Results and Discussion

Kinetic analysis:

 \rightarrow CH₂OO is only consumed by the unimolecular reaction (3): solution of the resulting differential equation from reactions (4) and (3) for very small conversion of O_3 and C_2H_4 (< 0.025% in the experiments) gives:

 $[CH_2OO] = \frac{1 - \exp(-k_3t)}{k_2} y k_4[O_3][C_2H_4]$ eq.(I)

 \rightarrow CH₂OO is converted to H₂SO₄ by SO₂ titration with a yield of 85%, additional H₂SO₄ formation in the inlet after SO₂ addition with t^{add} = 0.4 s (ozonolysis is still running):

$$H_2SO_4] = \left\{ 0.85 \ \frac{1 - \exp(-k_3 t)}{k_2} + t^{add} \right\} \ y \ k_4[O_3][C_2H_4] \qquad \text{eq.(II)}$$

Fig.1: H₂SO₄ (CH₂OO) concentrations as a function of the ethene concentration for different reaction times. Distinct time dependence indicates $k_3 < 1 s^{-1}$. For comparison, a few experiments with CH₃CHOO (syn and anti) show no time dependence in this time range pointing to $k_{3} > 3 \text{ s}^{-1}$.

Fig.2: Experimentally obtained ratios $[H_2SO_4] / [C_2H_4]$ as a function of time from the data given in Fig.1. Data analysis according to equ.(III) yields $k_3 = (0.19 \pm 0.04) \text{ s}^{-1}$ (full line). Sensitivity study (dashed lines, uncertainty of reaction time) leads to extended error limits, $k_2 = (0.19 \pm 0.07) \text{ s}^{-1}$.

 \rightarrow for the experimentally obtained ratio $[H_2SO_4] / [C_2H_4]$ and setting y k₄ $[O_3] = k_4'$ for constant [O₂], it follows:

$$\frac{[H_2SO_4]}{[C_2H_4]} = \left\{ 0.85 \frac{1 - \exp(-k_3t)}{k_3} + t^{add} \right\} k_4'$$
eq.(III)

Results:

- \rightarrow k₃ = (0.19 ± 0.07) s⁻¹ (time dependent measurement)
 - $k_3 = (0.23 \pm 0.12) \text{ s}^{-1}$ (steady-state CH₂OO conditions, t = 39 s)
 - $k_a = 0.04 0.26 \text{ s}^{-1}$ (quantum-chemical and statistical rate theory calculations)

literature: $k_3 \le 4.6 \text{ s}^{-1}$ (Newland et al.³) $k_{3} \leq (11.6 \pm 8.0) \text{ s}^{-1}$ (Chhantyal-Pun et al.⁴)

Reaction of CH₂OO with water monomer

 \rightarrow CH₂OO is consumed by the unimolecular reaction (3) and by the reaction with the water monomer (2a) resulting in eq.(IV):

 $\frac{[H_2SO_4]}{[C_2H_4]} = \left\{ 0.85 \ \frac{1 - \exp\left(-\{k_3 + k_{2a}[H_2O]\}t\right)}{k_3 + k_{2a}[H_2O]} + t^{add} \right\} k_4'$

 \rightarrow Data from Fig.3 gave $[H_2SO_4] / [C_2H_4]$ ratios as a function of $[H_2O]$ for fixed t = 7.5 s. Nonlinear regression analysis: $k_{22} = (3.2 \pm 0.5) \times 10^{-16} \text{ cm}^3 \text{ s}^{-1}$

Results: \rightarrow k_{2a} = (3.2 ± 1.2) × 10⁻¹⁶ cm³ s⁻¹ (incl. error propagation)

literature: \rightarrow wide range of k_{2a} values ! $k_{23} = 1.3 \times 10^{-15} \text{ cm}^3 \text{ s}^{-1} \text{ }^3 - 5.4 \times 10^{-18} \text{ cm}^3 \text{ s}^{-1} \text{ }^5$

Reaction of CH, OO with acetaldehyde and acetone

 \rightarrow CH₂OO is consumed by the unimolecular reaction (3) and by the reaction with the carbonyls (instead of the H₂O reaction):

Results:

- \rightarrow k_{CH2OO+acetald} = (1.7 ± 0.5) × 10⁻¹² cm³ s⁻¹ (incl. error propagation) lit.: $k_{CH2OO+acetald} \sim 1.7 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1.5}$ (high-pressure limit)
- $K_{CH2OO+acetone} = (3.4 \pm 0.9) \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$ (incl. error propagation) lit.: $k_{CH2OO+acetone} = (2.3 \pm 0.3) \times 10^{-13} \text{ cm}^3 \text{ s}^{-1} \text{ }^6$
- \rightarrow good agreement of our results with literature data

Fig.3: H₂SO₄ concentration as a function of ethene concentration for different H₂O concentrations, t = 7.5 s, $[O_3] = 2.3 \times 10^{11}$ cm⁻³. Low water concentrations of $[H_{2}O] < 10^{15} \text{ cm}^{-3}$ and, as a consequence, very low water dimer concentrations of $[(H_2O)_2] < 2.5 \times 10^9$ cm⁻³, allow separation of reaction (2a) from reaction (2b).^{1,2} $r_{2b} < 1/20 r_{2a}$

- **Consequences:**
- \rightarrow Reaction of CH₂OO with water monomer (2a) cannot compete with the reaction of the water dimer (2b).

Fig.4: [H₂SO₄] / [C₂H₄] as a function of carbonyl concentrations. The curves represent the best-fit results according to modified eq.(IV). $t = 7.5 \text{ s}, [O_3] = 2.3 \times 10^{11}, [C_2H_4] = 2.14 \times 10^{13} \text{ cm}^3 \text{ s}^{-1}.$

Consequences:

 \rightarrow free-jet flow system is suitable for the determination of CH₂OO rate coefficients

References

.

* *

Summary

- (1) Chao, et al., Science, 2015, 347, 751-754. - (2) Berndt et al., PCCP, 2014, 16, 19130-19136. - (3) Newland et al., PCCP, 2015, 17, 4076-4088. · (4) Chhantyal-Pun et al., PCCP, 2015, 17, 3617-3626.

(5) Stone et al., PCCP, 2014, 16, 1139-1149. (6) Taatjes et al., PCCP, 2012, 14, 10391-10400.

- \Rightarrow The unimolecular reaction of CH₂OO, reaction (3), is very slow, k₃ = (0.19 ± 0.07) s⁻¹, and can be neglected in atmospheric modelling.
- \Rightarrow Reaction of CH₂OO with water monomer, reaction (2a), k_{2a} = (3.2 ± 1.2) × 10⁻¹⁶ cm³ s⁻¹, is less efficient compared with the reaction of the water dimer.
- \Rightarrow The good agreement of our results for k_{CH2OO+acetald} and k_{CH2OO+acetone} with literature data indicates that the free-jet flow system is suitable for the determination of rate coefficients of uni- and bimolecular reactions of CH₂OO.