Two different methods to investigate the kinetics of the gas-phase reaction of ozone with four sesquiterpenes

Results and Discussion

 $k_{(O3 + ref)}$

Figure 1: Experimental data of the reaction of O_3 with β -caryophyllene (β -Car) and α -humulene (α -Hum) relative to the reference substance 2,3-dimethyl-2-butene (TME) reaction plotted according to Eq. (I). Red circles: α -Hum (offset: -1.6); Black circles: β -Car

Rate coefficients and literature comparison

The rate coefficients of the reaction of O₂ with β -caryophyllene and α humulene support the literature values from Shu and Atkinson, 1994. However the rate coefficient of the reaction of O_3 with α -cedrene is one order of magnitude bigger than literature (Shu and Atkinson, 1994; Ghalaieny et al., 2012). The experiment was carried out the same way as for the other sesquiterpenes. The rate coefficient of the reaction of O_3 with isolongifolene was too low to be obtained with the given setup. Only an upper limit is given which is slightly lower than the literature values (Pollmann et al. 2005; Ghalaieny et al., 2012).

The results from the absolute method confirm the relative rate coefficient for the reaction of O_3 with β -caryophyllene by Shu and Atkinson and from this work.

The four structural isomers have very different rate coefficients concerning their reactions with ozone. This cannot be easily explained by the different neighbourhood of their double bonds. Ghalaieny et al. (2012) stated particle formation as a possible source of the differences. We detected very little particle formation that cannot considerably interfere with the measurements (< 120 cm⁻³, cut-off size: d \leq 1.5 nm).

S. 85 142.0

M. Ghalaieny et al., PCCP, 14, 6596-6602, 2012. J. Pollmann et al., Erwir, Sci. Techn. 39, 9620-9629, 2005. J. H. Seinfeld and J. F. Pankow, Annu. Rev. Phys. Chem., 54, 121–140, 2003.

hu and R. Atkinson, Int. J. Chem. Kin. 26, 1193-1205, 1994.

u and K. Atlonion, Int. J. Chem. Kin, 26, 1195-1205, 1994

nly O 3x10 absorbance 2x10 1x10 0 275 225 250

Absolute method:

wavelength (nm) Figure 2: UV spectra of O₂ (black line), β-caryophyl-

lene (β -Car) (red line) and during the reaction of O and β -Car (blue line). β -Car does not absorb at 254 nm (dashed vertical line) and does not influence the O₂ measurement.

Figure 3: Experimental data and fitted lines of the reaction of O_3 with β -caryophyllene in a stopped-flow experiment. The O₃ concentration decreases more rapidly with increasing β-caryophyllene concentration. $[O_3] = (7.4 \cdot 9.6) \cdot 10^{11}$, $[D-Car] = (1.5 \cdot 5.9) \cdot 10^{11}$ molecule cm⁻³. $k_{(O3+SQT)}$ was estimated via parameter fitting on $[O_{3}] = f(t)$

Sesquiterpene	T [K]	Reference substance	$\frac{k_{(O3+SQT)}}{k_{(O3+ref)}}$	k _(O3+SQT) (cm ³ molecule ⁻¹ s ⁻¹)	Literature
β-Caryophyllene	296	TME, α-Terpinene		(1.16 ± 0.43) · 10 ⁻¹⁴	Shu and Atkinson, 1994
	366	TME		(5.9 ± 4.2) · 10 ⁻¹⁷	Ghalaieny et al., 2012
	295	TME	10.9 ± 0.4	$(1.1 \pm 0.2) \cdot 10^{-14}$	This work
	295	α-Terpinene	0.73 ± 0.02	(1.1 ± 0.3) · 10 ⁻¹⁴	This work
	295	Absolute method		$(1.2 \pm 0.3) \cdot 10^{-14}$	This work
α-Humulene	296	TME, α-Terpinene		$(1.17 \pm 0.45) \cdot 10^{-14}$	Shu and Atkinson, 1994
	366	TME		$(6.4 \pm 4.2) \cdot 10^{-17}$	Ghalaieny et al., 2012
	295	TME	11.7 ± 0.4	$(1.2 \pm 0.2) \cdot 10^{-14}$	This work
	295	α-Terpinene	0.75 ± 0.02	$(1.1 \pm 0.3) \cdot 10^{-14}$	This work
α-Cedrene	296	cis-2-Butene		(2.78 ± 0.71) · 10 ⁻¹⁷	Shu and Atkinson, 1994
	366	TME		$(3.1 \pm 1.9) \cdot 10^{-17}$	Ghalaieny et al., 2012
	295	2-Methyl-2-butene	0.31 ± 0.01	(1.5 ± 0.2) · 10 ⁻¹⁶	This work
	295	cis-2-Butene	1.13 ± 0.01	$(1.3 \pm 0.2) \cdot 10^{-16}$	This work
Isolongifolene	366	TME		$(2.5 \pm 1.1) \cdot 10^{-17}$	Ghalaieny et al., 2012
	298	Other SQT		$(2.6 \pm 0.7) \cdot 10^{-17}$	Pollmann et al., 2005
	295	2-Methyl-2-butene		< 2 · 10 ⁻¹⁷	This work

Summary

Relative rate coefficients are determined for the reaction of O₃ with four sesquiterpenes with a relative and an absolute method with PTR-MS and UV detection The rate coefficients of the reaction of O, with β-caryophyllene and α-humulene agree well with the results from a study by Shu and Atkinson, 1994. They are in clear disag-

- recent with the recommendations by Ghalaieny et al., 2012. These high rate coefficients lead to very short atmospheric lifetimes of the two sesquiterpenes of about two minutes regarding the reaction with O_3 ($[O_3] = 7 \cdot 10^{11}$ molecule cm³). The rate coefficient of the reaction of O_3 with α -cedrene is one order of magnitude higher than literature data by Shu and Atkinson, 1994 and Ghalaieny et al., 2012 and
- needs further investigation. For the reaction of O₁ with isolongifolene only an upper limit is given which is slightly lower than the results from studies by Ghalaieny et al., 2012 and Pollmann et al., 2005.