Competitive reaction of CH,OO with SO, and water vapour and the thermal lifetime of CH, OO at 293 K

Torsten Berndt¹, Heikki Junninen², Roy L. Mauldin III^{2,3}, Hartmut Herrmann¹, Markku Kulmala², Mikko Sipilä²

- Leibniz-Institute for Tropospheric Research, TROPOS, Leipzig, Germany
- Department of Physics, University of Helsinki, Finland
- University of Colorado at Boulder, Boulder, CO, USA

contact: berndt@tropos.de

Motivation

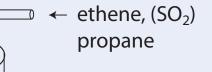
H₂SO₄ represents a key substance in the process of atmospheric nucleation. The importance of gas-phase products from olefin ozonolysis other than OH radicals, most likely stabilized Criegee Intermediates (sCIs), for the process of atmospheric SO₂ oxidation to H_2SO_4 has recently been discovered.

Subject of this work are investigations on H_2SO_4 formation from $CH_2OO + SO_2$ as a function of the water vapour content and the measurement of the CH,OO steady state concentration starting from the ozonolysis of ethylene used for formaldehyde oxide generation.

For the reaction with water vapour, up to now only upper limit estimates of k₃, are available from the diiodomethane photolysis technique differing by a factor of about 40, Welz et al. (2012) and Stone at al. (2014). Results from ethene ozonolysis experiments point to a much more effective reaction of CH₂OO with water vapour, e.g. Suto et al. (1985). Quantum chemistry favours reaction (3b) over (3a) for atmospheric conditions, Ryzhkov and Ariya (2004).

TROPOS Leibniz Institute for

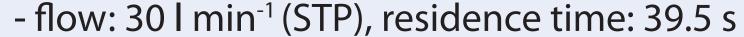
Tropospheric Research



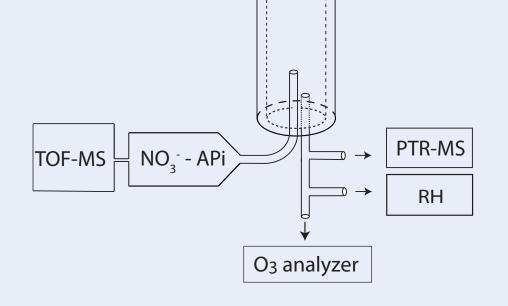
Experiment

Institute for Tropospheric Research -Laminar Flow Tube, IfT-LFT:

- length: 505 cm, 8 cm i.d.
- carrier gas: purified air (99.9999999 vol%)
- atmospheric pressure
- temperature: 293 K



$O_3 + C_2 H_4$		$y_1 \cdot OH + y_2 \cdot sCI(CH_2OO) +$
$CH_2OO + SO_2$	\rightarrow	2 3
$CH_2OO + H_2O$	\rightarrow	products
$CH_{2}OO + (H_{2}O)_{2}$	\rightarrow	products
CH ₂ OO	\rightarrow	dioxirane, OH,
$CH_{2}OO + CH_{2}OO$	\rightarrow	products


(1) $k_2 = 3.9 \cdot 10^{-11} \text{ cm}^3/\text{s}$ Welz et al. (2012) (2) (3a) $k_{3a} < 4.10^{-15} \text{ cm}^3/\text{s}$ Welz et al. (2012) (3b)(4) $k_{a} = 100 \text{ s}^{-1}$ (upper limit) Welz et al. (2012) $k_{a} = 0.3 \text{ s}^{-1}$ (calculated) Olzmann et al. (1997)

 $k_{z} = 3.1 \cdot 10^{-10} \text{ cm}^{3}/\text{s}$ Su et al. (2014) (5)

- relative humidity: ca.2 50 %
- reactant concentrations:
 - $[ethene] = 1.5 \cdot 10^{13} \text{ cm}^{-3}$
 - $[O_3] = 2.2 \cdot 10^{11} \text{ cm}^{-3}$
 - $[SO_{2}] = (5.6 1600) \cdot 10^{11} \text{ cm}^{-3}$
 - $[C_{3}H_{8}] = (1.6 8.2) \cdot 10^{15} \text{ cm}^{-3}$
 - (OH scavenger)
- ethene conversion: 0.0014%

 H_2SO_4 detection: NO_3^- -CI-APi-TOF detection limit: a few 10⁴ cm⁻³

Results and Discussion

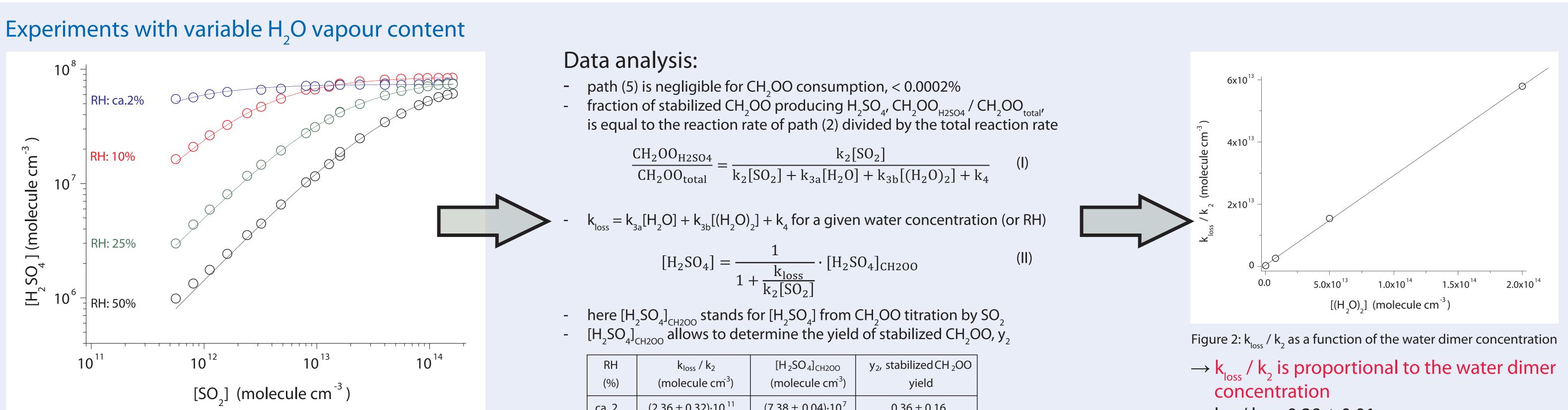
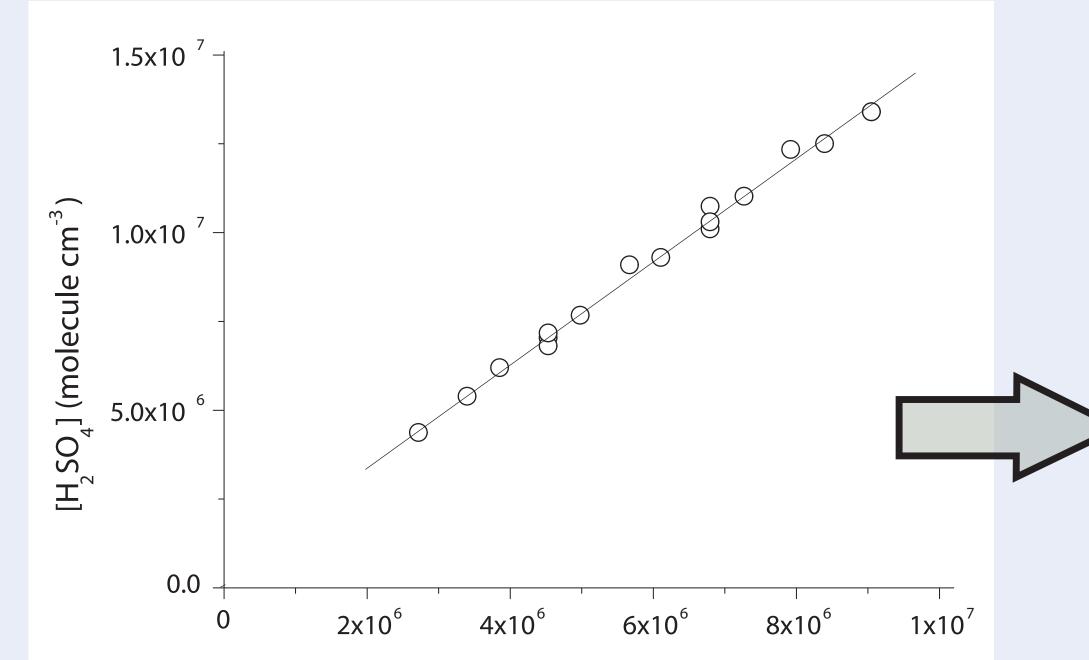



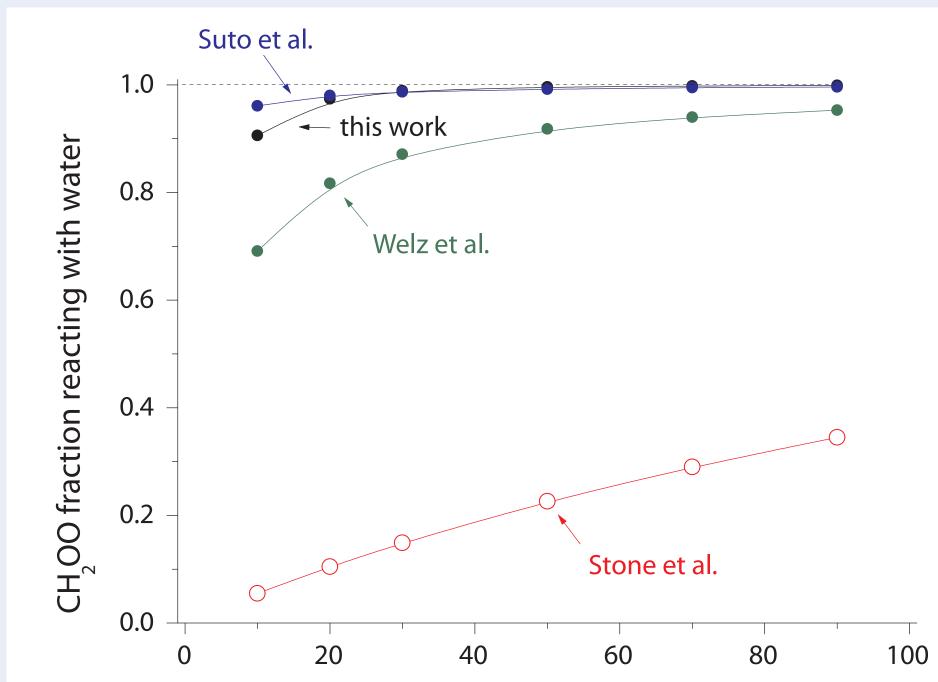
Figure 1: H_2SO_4 formation as a function of SO_2 and RH; $[O_3] = 2.2 \cdot 10^{11}$ and $[C_2H_4] =$ $1.5 \cdot 10^{13}$ cm⁻³. Lines are the results from regression analysis according to equation (II).

Experiments with variable CH₂OO production

$[H_2SO_4] =$	1	[Н 50]	
$[\Pi_2 3 0_4] -$	kloss	$[H_2SO_4]_{CH2OO}$	
	$1 + \frac{k_{loss}}{k_2[SO_2]}$		
	K2[302]		

RH (%)	k _{loss} / k ₂ (molecule cm ⁻³)	$[H_2SO_4]_{CH2OO}$ (molecule cm ⁻³)	y ₂ , stabilized CH ₂ OO yield
ca. 2	$(2.36 \pm 0.32) \cdot 10^{11}$	$(7.38 \pm 0.04) \cdot 10^7$	0.36 ± 0.16
10	(2.59 ± 0.10)·10 ¹²	$(8.58 \pm 0.03) \cdot 10^{7}$	0.42 ± 0.19
25	(1.55 ± 0.04) ⋅ 10 ¹³	(8.18 ± 0.03)·10 ⁷	0.40 ± 0.18
50	(5.79 ± 0.20) ⋅ 10 ¹³	$(8.36 \pm 0.07) \cdot 10^{7}$	0.41 ± 0.18

reaction in absence of SO₂ and water ($[H_2O] < 10^{14} \text{ cm}^{-3}$) titration of [CH₂OO]_s at the tube outlet with SO₂ (presence of H₂O)


 $[CH_{2}OO]_{ss} = y_{2} \cdot k_{1} \cdot [O_{3}] \cdot [C_{2}H_{4}] / k_{4}$ additional H₂SO₄ formation after SO₂ addition:

 $[H_2SO_4]_{addional} = y_2 \cdot k_1 \cdot [O_3] \cdot [C_2H_4] \cdot t$ slope of $[H_2SO_4]_{total}$ vs. $k_1 \cdot [O_3] \cdot [C_2H_4]$: $y_2/k_4 + t$

- experimental: slope = 1.44 ± 0.05 s
- $y_2 = 0.4$, t ~ 0.4 s
- \rightarrow k₄ = 0.38 ± 0.02 s⁻¹ (only statistical error)

- $\rightarrow k_{_{3h}} / k_{_2} = 0.29 \pm 0.01$
- \rightarrow intercept: k₄ / k₂ = (4.3 ± 3.0)·10¹¹ cm⁻³

Atmospheric modelling

RH (%)

Figure 4: Modelling results of the CH₂OO fraction reacting with water vapour either

via path (3a) or (3b), k-values from literature as stated, $[SO_2] = 10^{10}$ molecule cm⁻³.

 $k_1 \cdot [O_3] \cdot [C_2 H_4]$ (molecule cm⁻³ s⁻¹)

Figure 3: CH_2OO steady-state concentrations (H_2SO_4) as a function of different $[C_2H_4]$, $(7.8 - 26) \cdot 10^{12} \text{ cm}^{-3}; [O_3] = 2.2 \cdot 10^{11} \text{ cm}^{-3}, \text{ OH scavenger, RH} = 0\%. \text{ CH}_2\text{OO titration}$ with SO₂ (1.05 \cdot 10¹⁴ cm⁻³) at the the flow tube outlet.

References

Summary and Conclusions

Welz et al., Science, 335, 204 (2012). Stone et al., PCCP, 16, 1193 (2014). Suto et al., Environ. Sci. Technol., 19, 815 (1985). Ryzhkov and Ariya, PCCP, 6, 5042 (2004). Olzmann et al., J. Phys. Chem. A, 101, 9421 (1997). - Su et al., Nature Chem., doi10.1038/nchem.1890 (2014). Berndt et al., Atmos. Environ., 89, 603 (2014.

- The reaction of CH₂OO with water vapour is second order in [H₂O] indicating a reaction of CH₂OO with the water dimer as favoured
- from quantum chemical calculations.
- The atmospheric fate of CH₂OO is governed by the reaction with water vapour. There are conflicting rate coefficients (or k-ratios) for k_{3a}/k_{2} (k_{3b}/k_{2}) and k_{4}/k_{2} in the literature.
 - A comparison with the reactivity of CH₃CHOO and (CH₃)₂COO (Berndt et al., 2014) shows a distinct sCI-structure dependent behaviour.
 - A CH₂OO thermal lifetime at 293 K of about 3 s is deduced from CH₂OO steady-state measurements in agreement with theoretical calculations (Olzmann et al., 1997).