Aerosol processing by clouds: Observations from the HCCT-2010 hill cap cloud experiment

D. van Pinxteren¹, L. Poulain¹, A. Tilgner¹, S. Mertes¹, W. Birmili¹, J. Schneider², B. D'Anna³, C. George³, H. Herrmann¹

1 Leibniz-Institut for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany

2 Particle Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany

3 Université Lyon 1, Lyon, F-69626, France; CNRS, UMR5256, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne, F-69626, France

OB

TROPOS Leibniz Institute for Tropospheric Research

Table 1: Event list

Leibniz Assoc

Member of the

JECTIVE AND EXPERIMENT	
------------------------	--

- Hill Cap Cloud Thuringia 2010 (HCCT-2010): Ground-based cloud experiment on physical and chemical aerosol-cloud interaction at Mt. Schmücke, Germany, in Sep and Oct 2010
- Lagrangian-type approach with three sampling sites (Fig. 1): upwind, in-cloud, downwind
- Berner impactors at upwind and downwind sites for offline chemical characterization
- Four aerosol mass spectrometers (AMS, Aerodyne): 1 upwind, 2 in-cloud, 1 downwind
- Interstitial Inlet (INT) for sampling of interstitial particles and gas phase, CVI inlet for sampling cloud droplet residuals (Mertes et al., 2005)

	FCE1.2	03:00	06:20				20/09/2010	20/09/2010	20/09/2010	20/09/2010
	FCE2.1	15/09/2010 23:00	16/09/2010 02:00			NGE0.4	22/09/2010	22/09/2010	10.30	20.30
Ind		16/09/2010	16/09/2010			NCE0.5	10:50 23/09/2010	16:00 24/09/2010		
let for	FCE4.1	16/09/2010	16/09/2010			NCE0.6	23:30	02:50		
	FCE5.1	21:40	23:50	24/00/2010	25/00/2010	NCE0.7	24/09/2010 10:30	24/09/2010 20:00		
	FCE7.1	24/09/2010	00:50	24/09/2010 23:45	25/09/2010 01:45		03/10/2010	03/10/2010		
ethod),	FCE11.2	01/10/2010 20:50	02/10/2010 03:10	01/10/2010 22:30	02/10/2010 05:30	NCEU.8	21/10/2010	21/10/2010	21/10/2010	21/10/2010
	50544.0	02/10/2010	03/10/2010	02/10/2010	02/10/2010	NCE0.9	12:40 23/10/2010	21:20 23/10/2010	14:20	22:10
	FCE11.3	07:10	00:30	14:30 06/10/2010	20:00 07/10/2010	NCE0.10	16:10	22:40		
npaign	FCE13.3	06:50	01:00	12:15	03:15	NE events	07/10/2010	07/10/2010		
	FCE22.0	01:50	09:00			NE_NCE0.1	13:00	18:50		
	FCE22.1	19/10/2010 21:10	20/10/2010 02:30	19/10/2010 21:30	20/10/2010 03:30	NE_NCE0.2	08/10/2010 15:10	08/10/2010 18:30		
irflow	FCE24.0	21/10/2010 22:10	22/10/2010 10:00			NE_NCE0.3	09/10/2010 14:30	10/10/2010 09:30		
	FCE26.1	23/10/2010 23:40	24/10/2010 07:20	24/10/2010 01:30	24/10/2010 08:45	NE_NCE0.4	10/10/2010 15:50	11/10/2010 03:30		
	FCE26.2	24/10/2010 08:40	24/10/2010 12:20	24/10/2010 09:15	24/10/2010 11:45	NE_NCE0.5	11/10/2010 13:00	12/10/2010 04:40		

					•	-	•			
				_	•	-				
	_		-					>	•	

* * *

1(

- Analysis of impactor samples for inorganic ions (IC), OC/EC (thermographic method) WSOC (TOC-analyzer), dicarboxylic acids (CE)
- Comprehensive analysis of meteorology and local air flow conditions during campaign (Tilgner et al., 2013)
- → Several "Full Cloud Events" (FCE) and "Non-Cloud Events" (NCE) with connected airflow at all sites and overall suitable conditions for Lagrange-type data analysis approach (Tables 1)

RESULTS AND DISCUSSION

Fig. 2: AMS concentrations at 3 sites: upwind (Goldlauter, gl), in-cloud interstitial (Schmücke, int_sm), incloud droplet residuals (cvi_sm), in-cloud total (int+cvi, tot_sm), downwind (Gehlberg, gb).

Concentrations upwind – downwind for all events

- Intercomparison of AMS concentrations with Berner impactor PM1.2 data showed larger discrepancies at downwind site, especially for ammonium and nitrate (factor 1.8 different on average, not shown)
- → To ensure comparability of AMS datasets, the impactor measurements were used as reference and the AMS downwind data was scaled to have same mean Berner/AMS ratio as at upwind site
- Fig. 2 shows time series of main AMS compounds for three longer FCEs (11.2, 11.3, 13.3)
- \rightarrow Usually upwind conc. > downwind conc., in-cloud conc. often somewhere in between

AMS mass fractions upwind – downwind for three cloud events

AMS concentrations at all sites for three cloud events

Fig. 3: Berner (left) and AMS (right) total PM concentrations upwind versus downwind for all FCEs and NCEs. All data in μ g m⁻³.

- → Downwind concentration decrease seen only during FCEs (Fig. 3). During reference NCEs (connected air flow, no hill cap cloud) concentrations at the two sites agree reasonably well.
- → Physical loss processes during cloud events, e.g. by droplet scavenging by trees and/or entrainment of cleaner air masses from aloft

Fig. 4: AMS mass fractions (fraction of compound to total AMS mass upwind versus downwind

- Mass fractions can indicate chemical modifications on a relative scale
- Fig. 3 shows scatter plots of main AMS components mass fractions upwind versus downwind for three longer FCEs (11.2, 11.3, 13.3)
- → sometimes only slight changes (FCE11.3), sometimes sulfate and/or organics strongly increased downwind (FCE11.2, FCE13.3)

Berner and AMS downwind mass addition during all cloud events scaled by different "conservative" tracers

- Scaling the downwind site by a conservative tracer (chemically inert, physical losses similar to compound of interest) can reveal whether cloud passage has added mass to pre-existing (upwind) particles
- As the ideal conservative tracer is not available, several ones were used for impactor (NH₄⁺, mass, K⁺, EC, Ca²⁺) and AMS scaling (NH₄⁺, number conc. of small particles with D_p =25-49 nm, BC)
 - Fig. 5 shows results for some compounds from impactor measurements: All tracers indicate mass addition of sulfate and OC at least during FCE11.3 and FCE22.1in the order of approx. 0.2 0.4 μ g m⁻³. Similarly, oxalate increases during FCE11.2 and FCE22.1 in the order of 5 50 ng m⁻³

Compound used for ammonium mass potassium EC calcium downwind normalization:

Fig. 5: Berner downwind mass additions $(c_{downw.} - c_{upw.})$ for measured data (red) and data scaled using different "conservative" tracers measured from the same impactor samples.

- AMS data (Fig. 6) usually similar to impactor data. Several events exist where all parameters indicate mass addition.

CONCLUSIONS

- Hill cap cloud used as a natural flow through reactor during HCCT-2010
 - Physical mass losses during cloud events challenge a direct observation of chemical modifications after cloud passage
 - Mass fractions indicate modified relative chemical composition
 - Using best-available "conservative" tracers to correct for physical losses results in several cloud events where mass increases after cloud passage in the order of several tenths of µg m⁻³ are observed for sulfate, organics and sometimes nitrate.

Fig. 6: Box-plots of AMS mass additions ($c_{downw.} - c_{upw}$) for measured data (red) and data scaled using different continuously measured "conservative" tracers.

REFERENCES AND FUNDING

Mertes et al., 2005, Atmos. Environ. 39(23-24), 4233-4245 Tilgner et al., 2013, submitted to ACPD Eunding by German Research Foundation (DEG)

Funding by German Research Foundation (DFG), Bonn, Germany