Evaluation of PM₁₀ and trace gas measurements with the MARGA during the HCCT 2010 campaign

Benjamin Fahlbusch¹, Gerald Spindler¹, Laurent Poulain¹, Achim Grüner¹, Markus Wallasch², Hartmut Herrmann¹

Leibniz-Institute for Tropospheric Research, Leipzig, Germany
 Umweltbundesamt, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany

Contact: fahlbusch@tropos.de

• • •

* * *

INTRODUCTION

During the Hill Cap Cloud Thuringia (HCCT) field campaign in September and October 2010 at Mt. Schmücke (Germany) the online system MARGA (Monitor for Aerosols & Gases in ambient Air [1,2]) was deployed at the upwind valley station in Goldlauter.

The instrument was developed by Metrohm Applikon, Netherlands and uses a combination of a wet-rotating denuder and a steam-jet-aerosol-collector to capture gases and particles in ambient air. During the HCCT campaign the MARGA was connected to a PM_{10} inlet-system to measure the concentrations of the inorganic components Cl⁻, NO_3^- , SO_4^{2-} , Na^+ , NH_4^+ , K^+ , Mg^{2+} , Ca^{2+} in the particle phase and the corresponding trace gases HCl, HNO_2 , SO_2 , HNO_3 and NH_3 in a time resolution of one hour

OVERVIEW

COMPARISON WITH AN AMS

Table1 gives a summary of the measured particle and gas concentrations during HCCT in September and October 2010. Figures 1 and 2 show the time series of the main ions in the particle phase and the corresponding trace gases.

- Overall low gas phase concentrations, only in the mid of October high concentrations of SO₂ were observed due to the long range transport of continental air masses.
- Slightly higher particle concentrations in October
- Periods with high Cl⁻ concentrations indicate the influence of maritime air masses, but most of the time the chloride concentration was below the detection limit of the MARGA

Table 1: Summary of the aerosol concentrations during HCCT.

	Mean [µg/m³]	Stdev [µg/m³]	Ν		Mean [µg/m³]	Stdev [µg/m³]	Ν
HCI	0.13	0.14	164	SO4 ²⁻	1.38	0.8	1003
HNO ₂	0.64	0.39	999	Na ⁺	0.12	0.16	922
SO ₂	0.67	1.34	1002	NH_4^+	1.12	3.27	1001
HNO ₃	0.23	0.62	989	K⁺	0.1	0.04	888
NH ₃	0.81	0.84	1000	Mg ²⁺	0.14	0.15	981
Cl-	0.19	0.21	402	Ca ²⁺	0.59	0.36	992
NO_3^-	1.94	2.08	1003				

The MARGA measurements were compared with a HR-ToF-AMS (High Resolution – Time of Flight - Aerosol Mass Spectrometer, Aerodyne, USA [3]) during the HCCT campaign:

- Despite the different size cutting of the two instruments (MARGA: PM₁₀, AMS: PM₁) a good agreement was found for NO_{3⁻}, NH₄⁺ and SO_{4²⁻} (figure 3) -> NO_{3⁻}, NH₄⁺ and SO_{4²⁻} mainly present in the submicron fraction of particles.
- Exception: In the first week of the campaign MARGA detects more NO_{3⁻} than AMS -> high NO_{3⁻} concentrations in the particle coarse mode due to the influence of maritime air masses

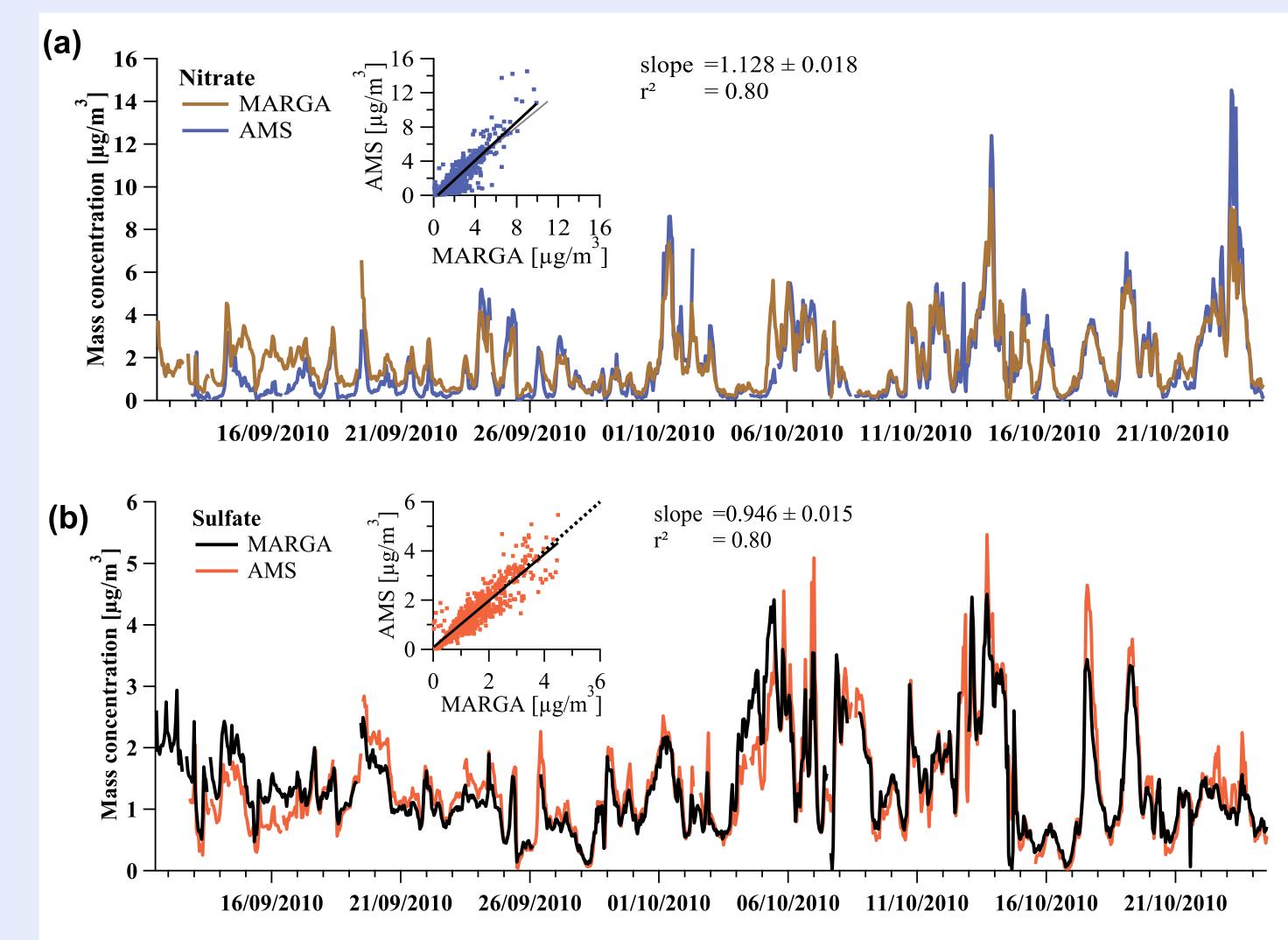


Fig. 1: Gas concentrations during HCCT 2010 measured with the MARGA.

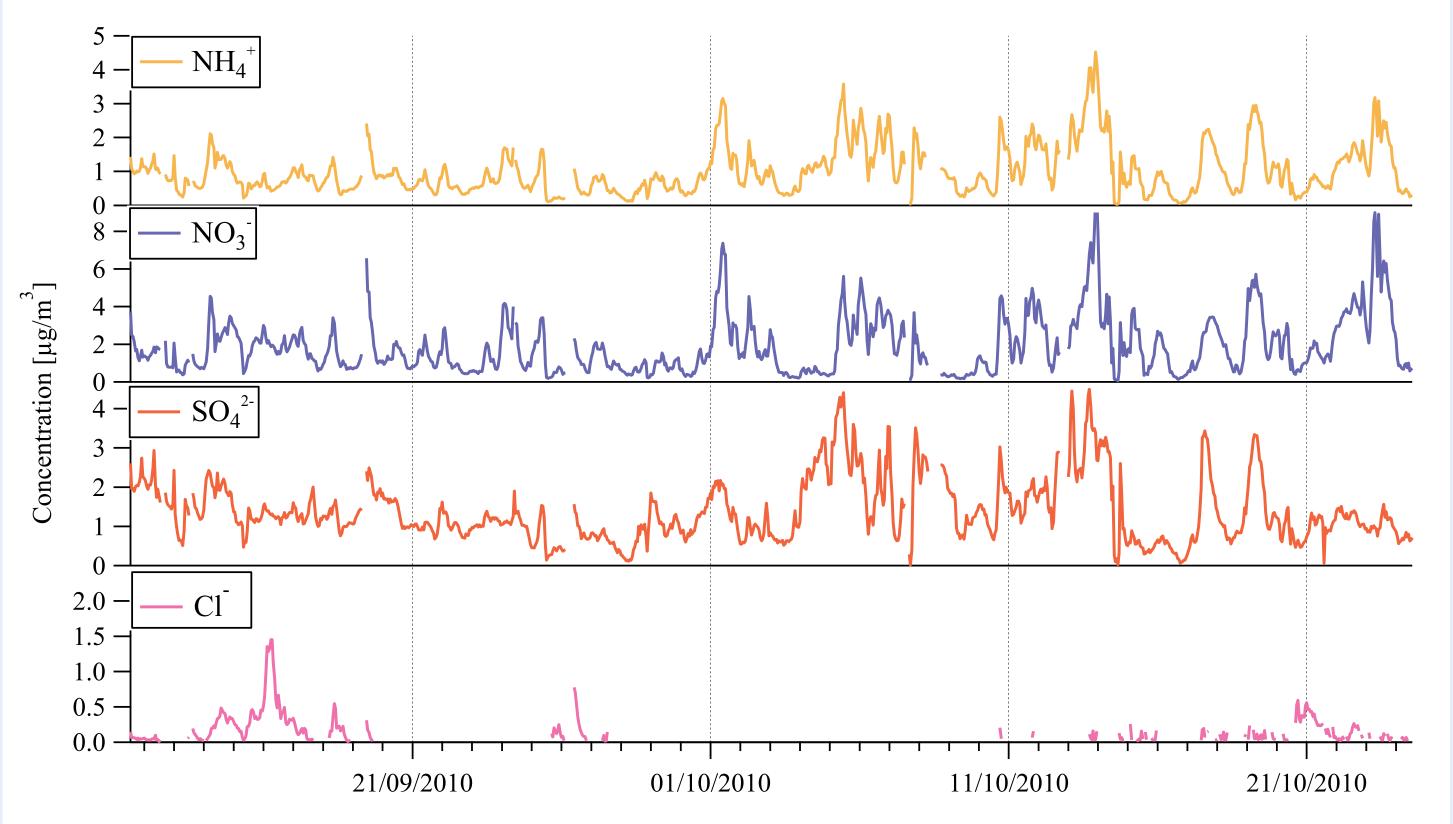


Fig. 3: Comparison between MARGA and HR-ToF-AMS measurements during HCCT 2010. (a) Comparison of the nitrate concentration. (b) Comparison of the sulfate concentration.

DIURNAL VARIATIONS

Figure 4 shows the diurnal variation of selected gases and particles as box plots averaged over the whole HCCT campaign.

- Maximum concentration for NH₃ and SO₂ is observed in the early afternoon, minimum concentration during the night.
- SO₄²⁻ shows no diurnal variation.
- NO₃⁻ shows a weak diurnal variation with highest concentration in the morning and lowest concentration in the afternoon

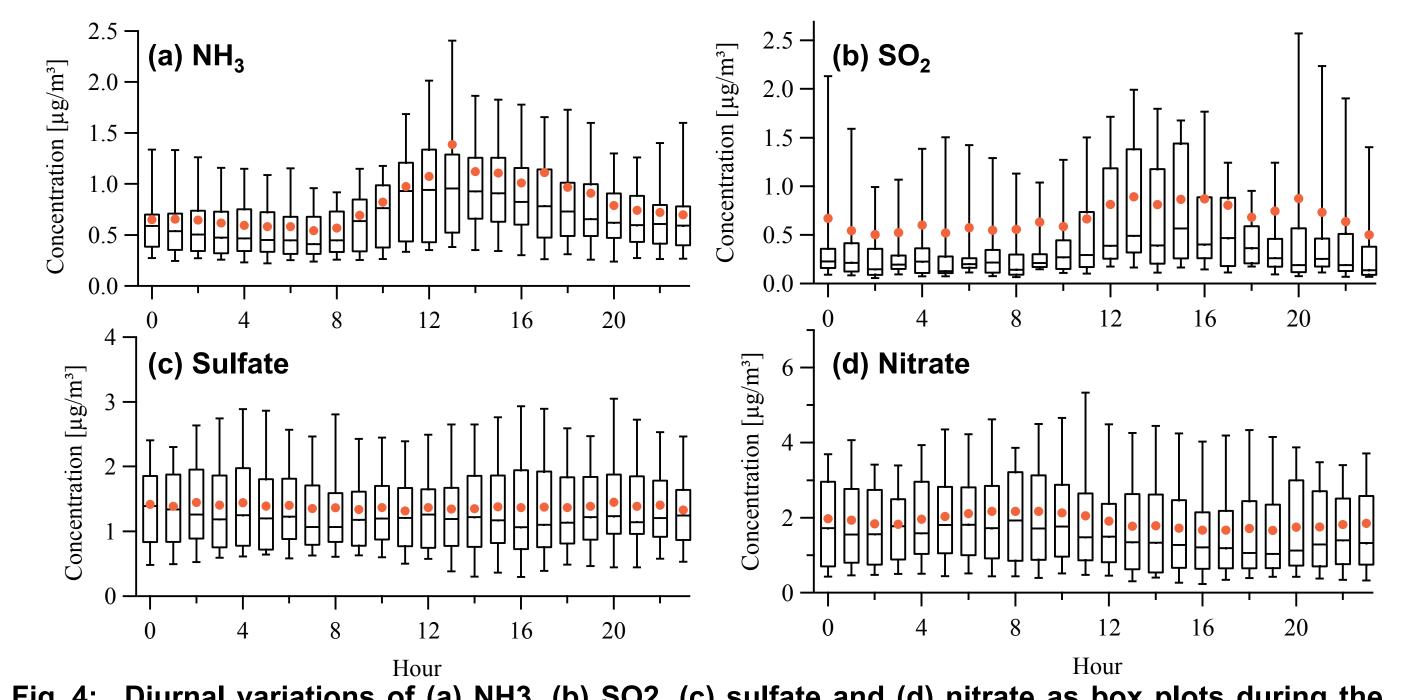


Fig. 2: Concentrations of inorganic ions during HCCT measured with the MARGA.

SUMMARY

A MARGA was used to quantify the water-soluble inorganic ions in the particle phase and the corresponding trace gases during the HCCT campaign in autumn 2010. A data yield of over 90% was achieved for the main ions and gases.

The comparison of the MARGA with a HR-ToF-AMS shows a good agreement for nitrate, ammonium and sulfate. Only in the first week of the campaign a significant difference in the nitrate concentrations was visible.

Fig. 4: Diurnal variations of (a) NH3, (b) SO2, (c) sulfate and (d) nitrate as box plots during the HCCT campaign. The red dots represent the median concentration of the measured aerosols.

References

[1] ten Brink, H., Otjes, R., Jongejan, P., Slanina, S. (2007) An instrument for semi-continuous monitoring of the size- distribution of nitrate, ammonium, sulphate and chloride in aerosol. *Atmos. Environ.* 41, 2768-2779.
[2] Makkonen, U., A. Virkkula, Mäntykenttä, J., Hakola, H., Keronen, P., Vakkari, V., Aalto, P. P. (2012). Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity. *Atmos. Chem. Phys. Discuss.* 12(2): 4755-4796.
[3] Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., Herrmann, H. (2011). Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz. *Atmos. Chem. Phys.* 11(24): 12579-12599.