Relating particle hygroscopicity and CCN activity to chemical composition during HCCT-2010 field campaign

LEIBNIZ INSTITUTE FOR ROPOSPHERIC RESEARCH

Zhijun Wu, Laurent Poulain, Silvia Henning, Katrin Dieckmann, Wolfram Birmili, Maik Merkel, Dominik van Pinxteren, Frank Stratmann, Herrmann Hartmut, Alfred Wiedensholer

Leibniz Institute for Tropospheric Research, Leipzig, Germany
E-mail: wuzhijun@tropos.de

2. Methodology

The three ways to calculate particle hygroscopicity parameters
(1) $\kappa_{H T D M A}=\left(H G F^{3}-1\right)\left(\frac{\exp \left(\frac{A}{D_{d} \cdot H G F}\right)}{R H}-1\right)$ HTDMA measurements
(2) $\kappa_{C C N}=\frac{4 A^{3}}{27 D_{d}^{3} n^{2} S_{c}} \quad$ CCN measurements
(3) $\kappa_{\text {chem }}=\sum_{i} \varepsilon_{i} \kappa_{i} \quad$ AMS and MAAP measurements

Species	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{NH}_{4} \mathrm{HSO}_{4}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	Organics	Black carbon
Density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	1720	1830	1780	1769	1400	1700
kappa	0.58	0.89	0.56	0.48	0.09	0.0

Ref.1: Petters, M. D., and Kreidenweis, S. M.: Atmos. Chem. Phys., 7, 1961-1971, 10.5194/acp-7-1961-2007, 2007.

3. Particle hygroscopicity and CCN activity

Fig.1: Size-dependency of particle hygroscopicity ($\kappa_{\text {нTDMA }}$), number fraction of hydrophilic mode (F2), and mass fraction of key components derived from AMS measurements averaging over the entire sampling period.

Fig.2: Critical diameters at different supersaturation. κ_{CCN} is derived from equation [2] The data are the mean values averaging over the entire field campaign.

Fig.3: Comparison of $\kappa_{\text {HTDMA }}$ (dry particle diameter $=200 \mathrm{~nm}$ at $\mathrm{RH}=90 \%$), κ_{CCN} (critical diameter $=200 \pm 10 \mathrm{~nm}$), and $\kappa_{\text {chem }}$ (bulk chemical composition).

Fig.4: Comparison of $\kappa_{\text {HTDMA }}$ (dry diameter=250 nm at 90%) and $\kappa_{\text {chem }}$ (bulk chemical composition). $\kappa_{\text {chem }}=0.991^{*} \kappa_{\text {HTDMA }}, \mathrm{R}^{2}=0.74$

Fig.5: Relationship between organic volume fraction and $\kappa_{\text {HTDMA. }}$

Fig.6: Oxidation level vs. кorg (dry diameter $=250$ nm). кorg of organic fraction is estimated using equation [3]: $\quad \kappa_{\text {org }}=\left(\kappa_{\text {HTDMA }}-\sum \varepsilon_{j} \kappa_{j}\right) / \varepsilon_{\text {org }}$
5. Summary (1) Consistency between $\kappa_{C C N}$ and $\kappa_{H T D M A}(200 \mathrm{~nm})$ is not obtained due to in part a change solution non-ideality, and surface tension effects.
(2) $\kappa_{\text {HTDMA }}(250 \mathrm{~nm}$ at 90%) can be well predicted by bulk chemical composition derived from AMS and black carbon measured by MAAP.
(3) к НтдмА and oxidation level (O/C) are positively correlated.

