Relating particle hygroscopicity and CCN activity to chemical composition during HCCT-2010 field campaign

Zhijun Wu, Laurent Poulain, Silvia Henning, Katrin Dieckmann, Wolfram Birmili, Maik Merkel, Dominik van Pinxteren, Frank Stratmann, Herrmann Hartmut, Alfred Wiedensholer

Leibniz Institute for Tropospheric Research, Leipzig, Germany

E-mail: <u>wuzhijun@tropos.de</u>

1. Experiment and instruments

LEIBNIZ INSTITUTE FOR

TROPOSPHERIC RESEARCH

The main objective of the Hill Cap Cloud Thuringia 2010 (HCCT-2010) was to perform a ground-based Langrangian-type experiment for investigating the influences of clouds on aerosol chemistry. Here, we will refer to measurements at Goldlauter (upwind site) only, i.e. where HTDMA, CCNc, and AMS measurements were concurrently made.

Parameters

Instrumentation

Particle number size distribution

Scanning Mobility Particle Sizer (SMPS)

Particle chemical composition	High Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS)
Particle hygroscopic growth (RH=90%)	Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA)
CCN	Cloud Condensation Nuclei counter (CCNc)
Black carbon	Multi-Angle Absorption Photometer (MAAP)

2. Methodology

The three ways to calculate particle hygroscopicity parameters		Species	NH ₄ NO ₃	H ₂ SO ₄	NH ₄ HSO ₄	(NH ₄) ₂ SO ₄	Organics	Black carbon	
(4) $UCE^{3} = 1 \left(exp\left(\frac{A}{D_{d} \cdot HGF} \right) \right)$ HTDMA measurements									
(1) $\kappa_{HTDMA} = (HGF^{\circ} - 1) \left(\frac{RH}{RH} - 1 \right)$		Density [kg/m ³]	1720	1830	1780	1769	1400	1700	
$\kappa_{CCN} = \frac{4\pi}{27D_d^3 ln^2 S_c}$	CCN measurements	kappa	0.58	0.89	0.56	0.48	0.09	0.0	
(3) $\kappa_{chem} = \sum_{i} \varepsilon_i \kappa_i$	AMS and MAAP measurements								
Ref.1: Petters, M. D., and Kreidenweis, S. M.: Atmos. Chem. Phys., 7, 1961-1971, 10.5194/acp-7-1961-2007, 2007.									

3. Particle hygroscopicity and CCN activity

Fig.1: Size-dependency of particle hygroscopicity (κ_{HTDMA}), number fraction of hydrophilic mode (F2), and mass fraction of key components derived from AMS measurements averaging over the entire sampling period.

Fig.2: Critical diameters at different supersaturation. κ_{CCN} is derived from equation [2]. The data are the mean values averaging over the entire field campaign.

Fig.3: Comparison of κ_{HTDMA} (dry particle diameter=200 nm at RH=90%), κ_{CCN} (critical diameter=200±10 nm), and κ_{chem} (bulk chemical composition).

(1) Consistency between κ_{CCN} and κ_{HTDMA} (200 nm) is not obtained due to in part a change solution non-ideality, and surface tension effects. 5. Summary (2) κ_{HTDMA} (250 nm at 90%) can be well predicted by bulk chemical composition derived from AMS and black carbon measured by MAAP. (3) κ_{HTDMA} and oxidation level (O/C) are positively correlated.

