Photolysis of iron(III)-carboxylato complexes – Quantum yield determination and reactivity simulation in clouds and atmospheric particles

C. Weller, A. Tilgner, P. Bräuer, H. Herrmann

Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

contact: christian.weller@tropos.de

Tropospheric Research

Motivation and Background

Iron-complex photochemistry in the atmospheric aqueous phase

Iron is always present in concentrations from $\sim 10^{-9}$ (clouds) up to $\sim 10^{-3}$ M (fog, particles). Iron sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and photo-chemically reactive through LMCT (ligand to metal charge transfer) transitions. Fe-complex photolysis leads to radical production (see Fig. 1). The photochemistry initiates radical chain reactions, which is related to the oxidizing capacity of the troposphere and promotes ligand decomposition. The Fe²⁺ budget is important for the Fenton-reaction, which can be a considerable in-situ OH source in the aqueous phase.

Measurement of overall Fe²⁺ quantum yield

- De-oxygenation with Argon-bubbling prior to photolysis, if desired
- Direct photolysis in quartz-cuvette:

Fig. 1: Photolysis of Fe(III)-oxalato complex as example, including subsequent reactions.

Fig. 2: Experimental setup for complex photolysis with excimer laser (20ns pulse) or HgXe-lamp (continuous irradiation).

- Measurement of Excimer laser energy with calibrated pyro-electric sensor
- Ferrioxalate actinometry to determine HgXe-lamp photon flux (Hatchard and Parker, 1956)
- Measurement of Fe²⁺ as [Fe(Phen)₃]²⁺, $e_{I = 510 \text{ nm}} = 11 \text{ 100 M}^{-1}\text{cm}^{-1}\text{ UV-VIS spectrometer}$
- Calculation of iron speciation with speciation program (Species, Visual Minteq) •

Results and Discussion

Table 1: Measured quantum yields after flash photolysis, primary and secondary photo-reaction steps as well as observed effects of dissolved O_2 and increased excitation energy (E[↑]) on Fe²⁺ quantum yield, F[↓] stands for Fe^{2+} quantum yield decrease, $F\uparrow$ for increase, n.d. is not determined.

		200	0.54	0 00	0 00			
Ligand/ Complex	Ar/	308 nm	351 nm	O ₂ effect 308 nm	O_2 effect 351 nm	E↑ effect 308 nm	E↑ effect 351 nm	
Oxalate	Ar	not determined due to		n d	nd			
*[Fe(OOCCOO) ₂] ^{$-$} *[Fe(OOCCOO) ₃] ³⁻	Ar	experimenta 0.93±0.09	al limitations 0.88±0.08	tations $\Phi\downarrow$		O_2 n.d. Ar $\Phi \downarrow$	n.d.	
<i>Malonate</i> [#] [Fe(CH ₂ (COO) ₂) ₂] ⁻	O_2	$0.024{\pm}0.001$	0.040±0.003	n.d.	n.d.	n.d.	n.d.	
Tartronate	O_2	0.79 ± 0.02	0.78 ± 0.06			<u>О.</u> Ф.	O. no eff	
[#] [Fe(OOCCHOHCOO) ₂] [*]	Ar	0.90 ± 0.02	1.10 \pm 0.08 $\Phi\downarrow$ Φ		$\Phi \downarrow$	$O_2 \Phi_{\downarrow}$ Ar Φ_{\downarrow}	$O_2 \operatorname{HO} \operatorname{CH}$ Ar $\Phi \downarrow$	
<i>Succinate</i>	O_2	0.24 ± 0.02	0.17 ± 0.005			0Φ	O no off	
$[Fe((CH_2)_2(COO)_2)_2]^2$	Ar	0.23±0.02	0.12±0.01	no effect	$\Phi\uparrow$	$O_2 \Phi_{\downarrow}$ Ar Φ_{\downarrow}	Ar no eff	
Tartrate	O_2	0.57 ± 0.07	0.57 ± 0.02				n.d.	
$^{\#}$ [Fe((CHOH) ₂ (COO) ₂)] ⁺	Ar	0.56±0.07	0.55±0.02	no effect	no effect	n.d.		
[#] [Fe((CHOH) ₂ (COO) ₂) ₂] ⁻	O_2	0.61 ± 0.08	0.76 ± 0.05				O ₂ n.d. Ar no eff	
	Ar	0.63±0.09	0.76±0.02	no effect	no effect	O_2 n.d. Ar no eff		
Glutarate [Fe((CH ₂) ₃ (COO) ₂)] ⁻	O_2	0.021±0.001	0.017±0.002	n.d.	n.d.	n.d.	n.d.	
Pyruvate	O_2	0.47 ± 0.07	0.64 ± 0.02					
$[FeOOCCOCH_3]^{2+}$	Ar	0.63±0.07	0.76 ± 0.07	$\Phi \!\!\downarrow$	$\Phi \downarrow$	n.d.	n.d.	

(Oxygen/Carbon)_{Ligand} **Fig. 3:** Measured overall Fe²⁺ quantum yields at 308 nm of Fe(III) complexes investigated in this work as function of oxygen to carbon ratio of the ligand.

Higher quantum yields of Fe(III) complexes with ligands that have a higher oxygen to carbon ratio (glyoxalate, oxalate) (Fig.1) Oxygen can be present in three different substituents in the carboxylates considered in this work, the carboxylate, hydroxy and keto-group. Additionally, the keto-form can be hydrated, forming a gem-diol

Fig. 4: Product of overall quantum yields (F) and overall extinction coefficients (e_{total}) of [FeOx₂]⁻ and [FeOx₃]³⁻ mixtures as a function of calculated fraction [FeOx₂]⁻, HgXe-lamp photolysis @ 436 nm, Ar purged, I = 0.01 M, $[Fe(III)]_{total} = 4.85 \cdot 10^{-4} M.$

• The sum of both $[FeOx_2]^-$ and $[FeOx_3]^{3-}$ contained always 100%

$Glyoxalate #[Fe(OOCC(OH)_2)]^{2+}$ $Gluconate$ [Fe(HOCH ₂ (CHOH)_4 -COO)_2(OH)_3]^{2-}	O_2	0.76 ± 0.05	0.77 ± 0.06	$\Phi \downarrow$	T 1	$O_2 \Phi \downarrow$	O_2 n.d.	
	Ar	1.21±0.05	1.06 ± 0.02		$\Phi \downarrow$	$\operatorname{Ar} \Phi \downarrow$	Ar $\Phi\downarrow$	
	O_2	0.04 ± 0.01	0.03 ± 0.01					
	Ar	0.05±0.01	0.05±0.01	n.d.	n.d.	n.d.	n.d.	

*Species already in "Ref wo"; [#]Species new included in "Ext Fe"

- The quantum yields can differ up to one order of magnitude among different ligands (Tab.1, Fig.3)
- In most cases $F_{argon} > F_{oxygen} \rightarrow$ indicates the dependence of most F on secondary reactions involving produced radicals with oxygen and subsequent reactions
- Fe(III)-complexes with oxalate, tartronate, succinate and glyoxalate show decreasing quantum yields with an increasing amount of absorbed photons, when the incident laser-energy was increased, most likely due to a change of concentration ratios ratio of secondarily produced radicals towards non-photolyzed complexes

Aqueous-phase chemistry modeling

Relevant Fe(III) complex photolysis reactions of species from Tab. 1 were implemented in CAPRAM (Chemical Aqueous Phase Radical Mechanism) as "extended Fecarboxylate photochemistry" (Ext Fe). Former version of CAPRAM contained only Fe-sulfato, Fe-hydroxy and Feoxalato complex photochemistry (Ref wo, Tilgner and Herrmann, 2010). CAPRAM as part of the SPectral Aerosol Cloud Chemistry Interaction Model (SPACCIM; Wolke et al., 2005) has been applied in a 4.5 day non- Fe(III) carboxylate photolysis as a radical source? permanent cloud simulation including 8 cloud passages between deliquescent particle periods.

Oxygen substitution is thought to affect the photoreactivity in two ways:

(i) Via inductive effects causing better LMCT in the primary reaction step

- (ii) Oxygen influence can also occur via the presence of an oxygen containing group on the C-atom next to the LMCT-involved carboxylate group which enables a two electron oxidation product of the ligand \rightarrow further Fe(II) can be produced
- Peroxyl radicals formed from ligand fragments of tartronate, tartrate and glyoxalate can undergo an HO_2 elimination which can further cause secondary Fe²⁺ production
- The individual extinction coefficients are similar to those measured by Faust and Zepp (1993)
- The individual quantum yield F_i of $[FeOx_2]^2$ is higher than that of $[FeOx_3]^{32}$ in both studies, Faust and Zepp (1993) measured lower quantum yields due to use of a lower [Fe(III)]_{initial} than in this study

Fe(III) complex photolysis as important carboxylate sink

The inclusion of the photolysis of malonate, tartronate, succinate, tartrate and glyoxalate Fe-complexes had only minor effect on their degradation (Tab. 4), whereas the complex photolysis contributed with 40% to the depletion of pyruvate (also pyruvic acid included) (see Fig. 5). For oxalate, tartronate and tartrate, the Fe-complex photolysis is also a major sink.

All newly included carboxylates contribute into peroxyl radical reaction channels through their Fe-complex photolysis from which HO₂ radical is formed. However, their overall contribution to the total HO_2 sources remains small (together 1.3%, Tab. 3) with respect to peroxyl radical reaction channels that originate from other radical reactions like OH, NO₃ and SO_{4⁻}. Uptake of HO₂ from the gas phase is the most important source for the aqueous phase.

<u>Table 3</u>: Contributions of peroxyl radicals RO_2 or CO_2 from Fe(III) complex

of the total Fe(III)

Individual extinction coefficients e_i and individual quantum yields F_i of $[FeOx_2]^-$ and $[FeOx_3]^{3-}$ complexes were determined at 436 nm (Tab.2) from the intercepts of the regression lines (Fig.4)

Table 2: Individual quantum yields of Fe(III) 1:2 and 1:3 oxalato complexes obtained from continuous Hg(Xe)-lamp photolysis at 436 nm.

436 nm	[Fe(Ox)2] ⁻	[Fe(Ox)3] ³⁻	Ref.
ει [l mol ⁻¹ cm ⁻¹]	55 ± 9	$\begin{array}{c} 22 \pm 2 \\ 24 \pm 4 \\ 1.0 \pm 0.2 \\ 0.60 \pm 0.46 \end{array}$	this work
ει [l mol ⁻¹ cm ⁻¹]	62 ± 6		[<i>Faust and Zepp</i> , 1993]
Φι	1.4 ± 0.4		this work
Φι	1.0 ± 0.25		[<i>Faust and Zepp</i> , 1993]

Figure 5: Major sink and source fluxes for pyruvate in the model run with extended Fe-photochemistry.

Table 4: Fraction of main sink reactions of the ligands (L) with respect to sum the

Fig. 6: Simulated concentrations of Fe²⁺ and Fe³⁺ as sum of all species for the respective oxidation state in both "Ref wo" and "Ext Fe" runs.

photolysis or radical reactions to total simulated daytime $HO_2 \cdot O_2 \cdot O_2$ of all sink reactions for total simulation (Σ 108h).

RO ₂ ./CO ₂ . ⁻	Contribution RO ₂ ·/ CO ₂ · ⁻ decay	Contribution FeL + hv to	Contribution FeL + hv to	Fe(III) complex	Sink reaction	Pyruvate [%]	Glyoxalate [%]	Malonate [%]	Oxalate [%]	Succinate [%]	Tartronate [%]	Tartrate [%]
	to daytime HO ₂ ·/O ₂ · ⁻ [%]	daytime RO2·/CO2 [%]	daytime HO₂·/O₂· ⁻ [%]	with	FeL + hv	39.7	2.3	-	-	3.5	-	91.2
$\cdot CO_2^-$	12	96.3	11	Oxalate	$FeL_2 + hv$	-	-	5.6	98.2	0.4	46.4	8.8
$\cdot \mathbf{O}_{1} \mathbf{C} \mathbf{H}(\mathbf{O} \mathbf{H})$	A 3	0.70	0.03	Glyovalate	$FeL_3 + hv$	-	-	-	0.7	-	-	-
	ч.5	0.70	0.05	Публагас	$LH/LH_2 + \cdot OH$	27.7	93.3	20.9	< 0.05	87.7	29.0	-
$CH_3C(OH)_2O_2$	33.0	0.39	0.13	Pyruvate	$L^{-}/LH^{-} + \cdot OH$	18.0	3.9	73.2	0.6	7.7	24.2	-
$\cdot O_2 CH(OH) COO^-$	0.07	2.3	0.002	Tartronate	I H/I H + NO	0.8	0.1	0.1	< 0.05	0.1	0.2	
·O ₂ CH(OH)CH(OH)COO ⁻	0.02	100.0	0.02	Tartrate	$L\Pi/L\Pi_2 + \Pi O_3$	0.8	0.1	0.1	< 0.03	0.1	0.2	-
2 / / /					$L^{2}/LH^{2} + NO_{3}$	13.8	< 0.05	0.2	0.4	0.6	0.1	-
					$LH/LH_2 + SO_4$.	-	0.5	-	-	-	-	-

Conclusions

**

- Most investigated Fe-complex photolysis processes involve secondary reactions that influence their experimentally determine quantum yields
- Quantum yields depend on experimental parameters (oxygen saturation, incident energy) and structure of different ligands
- Fe(III)-complex photolysis represents a major sink for some carboxylates in the atmosphere besides radical reactions
- Inclusion of new Fe(III)-carboxylate photochemical reactions in CAPRAM
- SPACCIM model did not significantly affect the Fe(II) budget (Fig.6)
- No significant contribution to radical formation

References: Faust & Zepp (1993) Environ. Sci. Technol., 27, 2517-2522; Hatchard & Parker (1956) Proc. R. Soc. Lond., Ser. A, 235, 518; Tilgner and Herrmann (2010) Atmos. Environ., 44 (40), 5415-5422; Wolke (2005) Atmos. Environ., 39 (23-24), 4375-4388