

Mechanistic studies on the OH-initiated oxidation of acetone in the aqueous phase

J. Schindelka, D. Hoffmann and H. Herrmann Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, D-04318 Leipzig, Germany schindelka@tropos.de

Motivation

- > Acetone is an ubiquitous compound in the tropospheric gas phase ($\hat{c} = 0.2-3 \text{ ppbv}$) [1]
- \succ In the upper troposphere it is mainly removed by photolysis whereby HO, and PAN (Peroxyacetylnitrate) can be produced
- > Reactions with OH radicals in the aqueous phase can lead to the generation of semi-volatile compounds
- > Therefore it serves as precursor for the formation of SOA (secondary organic aerosol)
- > Phase transfer processes as well as degradation reactions in the aqueous phase are still not completely understood

a) Laser photolysis

- > OH radicals were generated by laser photolysis of hydrogen peroxide (1 mM)

- > An increased uptake of acetone could in turn influence the HO_v budget of the troposphere
- ➤ The results of previous studies [2], [3], [4] and [5] on the decomposition of acetone in the aqueous phase are shown in Figure 1
- > By comparing the studies larger differences can be found so that there is a need for further investigations

Figure 1: Reaction scheme (based on [2], [3], [4] and [5])

Results

a) Optimization of initial concentrations

- > The concentration of OH radicals formed due to photolysis was calculated for different initial concentrations of hydrogen peroxide
- \succ The following equation was used

$$[OH] = \frac{E_{laser} \lambda_{laser} \phi}{hcVN_A} \left(1 - 10^{\left[(\varepsilon_{H_2O_2} c_{H_2O_2} + \varepsilon_{acetone} c_{acetone})d \right]} \right)$$

- > The fraction of OH radicals reacting with acetone was simulated with GePaSi (Table 1)
- > For the simulation the following kinetic model was used:

c) Reaction scheme

- > The formation of the products can be explained with mechanisms of Schuchmann and von Sonntag [7]
- > Main mechanisms are the bimolecular decomposition of a tetroxid formed of two peroxyl radicals (Figure 1) and the elimination of HO₂

 \succ Excimer laser, KrF ($\lambda = 248$ nm)

 \succ The acetone concentration was set to 0.1 mM

b) Analysis of carbonyl compounds

- Derivatization of carbonyl compounds with 2,4-DNPH
- > SPE with Oasis HLB cartridge $(3cc/60 \text{ mg}, 30 \mu \text{m})$: 2 ml of the sample were added and eluted with 1.25 ml of acetonitrile
- ➢ UltiMate 3000 HPLC-MS system, Dionex
- \succ C₆-Phenyl column (Phenomenex Gemini 5u, $150 \ge 2 \text{ mm}$, particle size = 5µm)
- Eluents: water/acetonitrile, both with 0.2 % acetic acid > Detection: ESI-MS with Single Quad in negative mode

c) Analysis of carboxylic acids

- ≻ CE-UV Spectra Phoresis 1000, Thermo Separation Products with fused silica capillary
- > Buffer: aqueous solution of 10 mM p-aminobenzoate, 8 mM diethylenetriamine, 3.5 mM NaOH and 1 % (v/v) methanol [6]
- ➢ Voltage: -29.4 kV
- \blacktriangleright Detection: indirect, $\lambda = 254$ nm

d) Ratio of path A and B

> For comparison with the other studies the ratio between the pathways A and B (Figure 1) were calculated

OH + OH	$\rightarrow H_2O_2$	$k_{2nd} = 1.0 \cdot 10^{10} \text{ M}^{-1} \text{s}^{-1}$	(R-1)
$OH + H_2O_2$	$\rightarrow HO_2 + H_2O$	$k_{2nd} = 2.7 \cdot 10^7 \text{ M}^{-1} \text{s}^{-1}$	(R-2)
OH + acetone	\rightarrow acetonyl + H ₂ O	$k_{2nd} = 1.5 \cdot 10^8 \text{ M}^{-1} \text{s}^{-1}$	(R-3)

Table 1: Initial concentration of hydrogen peroxide and the formed OH radicals, as well as the fraction of the three possible reactions

$[H_2O_2]_0$ in M	[OH] in M	(R-1) in %	(R-2) in %	(R-3) in %
$1 \cdot 10^{-2}$	8.3·10 ⁻⁵	50	47	3
$1 \cdot 10^{-3}$	$7.5 \cdot 10^{-6}$	41	38	21
$1 \cdot 10^{-4}$	$5.2 \cdot 10^{-7}$	12	13	75

- > The ratio of the concentrations of hydrogen peroxide to acetone has to be decreased to increase the fraction of OH radicals reacting with acetone
- The initial concentration of hydrogen peroxide was set to 1 mM to obtain a detectable conversion of acetone

b) Results of the photolysis experiments

- > The concentration of acetone and the forming oxidation products was measured dependent on the number of laser pulses
- \succ The decomposition of acetone was not detectable until 20 laser pulses
- > Detected products were: methylglyoxal and hydroxyacetone as primary products; pyruvic acid and acetic acid as second generation products; formic acid, glycolic acid and oxalic acid are late prod-

Figure 4: Developed reaction scheme on the basis of the measurements and reaction mechanisms of Schuchmann and von Sonntag [7]

- > Therefore the increase of the concentration of methylglyoxal and hydroxyacetone at 1-5 laser pulses was used
- > The result of this work, shown in Table 2, is consistent with that of Stefan and Bolton [4]
- \succ The favoured way of decomposition of the tetroxide is the formation of methylglyoxal and hydroxyacetone

Table 2: Ratio of the reactions A and B

Reference	A in %	B in %
[2]	69	31
[4]	29	71
[5]	64	36
this work	37	63

Summary and Outlook

- > The OH radical initiated degradation of acetone in aqueous phase was measured
- > The amount of OH radicals reacting with acetone is dependent on the ratio of the initial concentrations of hydrogen peroxide to acetone
- > A reaction scheme was developed from the distribution of the concentrations of acetone and the oxidation products

Number of laser pulses

Figure 3: Concentration distribution of acetone and the oxidation products dependent on the number of laser pulses: (a) measured as derivatives with 2,4-DNPH with HPLC-MS and (b) carboxylic acids measured with CE-UV

> The results of this work together with reaction kinetics (e.g. recombination of peroxyl radicals) can be implemented in atmospheric models

References

[1] Singh, H. B., et al. (1994), Journal of Geophysical Research-Atmospheres, 99, 1805-1819 [2] Zegota, H., et al. (1986), Zeitschrift Für Naturforschung Section B-a Journal of Chemical Sciences, 41, 1015-1022 [3] Stefan, M. I., et al. (1996), Environmental Science & Technology, 30, 2382-2390 [4] Stefan, M. I., and J. R. Bolton (1999), Environmental Science & Technology, 33, 870-873 [5] Poulain, L., et. al. (2010), Chemosphere, 81, 312-320 [6] Neusüss, C., et al. (2000), Journal of Geophysical Research-Atmospheres, 105, 4513-4527 [7] von Sonntag, C., and H. P. Schuchmann (1991), Angewandte Chemie-International Edition in English, 30, 1229-1253

Acknowledgement

The project ACETOX (HE 3086/8-1) is supported by the German Research Foundation DFG.