Carbonyl group containing products from nopinone oxidation

Ariane Kahnt, Yoshiteru Iinuma, Anke Heinold, Olaf Böge and Hartmut Herrmann

kahnt@tropos.de

Leibniz-Institut für Troposphärenforschung e.V., Permoserstr. 15, Leipzig D-04318, Germany

Introduction

Nopinone is a first generation product from the atmospheric β-pinene oxidation and was mainly investigated in kinetic studies in the past. Rate constants for OH (Atkinson and Aschmann, 1993; Calogirou et al., 1999) and NO₃ reactions and few reaction products (Calogirou et al., 1999) were reported. In this study nopinone oxidation was performed to investigate oxidation products in gas- and particle-phase by OH reaction.

Detected m/z 511 compound from denuder samples

• A complex mixture of oxo-nopinones were detected at m/z 511 with no apparent favor of one isomer.

Figure 4: Oxo-nopinone with the keto-groups in 2,3 position.

• A modelling study suggested the C3-position as favored location for the initial H-abstraction (Lewis et al., 2005) where the C-H bond was calculated to have the lowest energy barrier.

• Due to the neighbouring carbonyl-group, the weak C_a-H bond is preferred for the OH attack.

Figure 5: Possible positions of initial H-abstraction from nopinone OH oxidation.

• Formed 3-nopinonyl radical can react further e.g. with O_2 to form oxo-nopinone (see Figure 6).

Figure 6: One possible mechanism for oxo-nopinone formation.

Figure 3: HPLC/(-)ESI-TOFMS anaylsis of denuder extracts. Top part compares Base Peak Chromatograms (BPC) (A) of a nopionone experiment with (B) a TME/O₃ blank reaction. (C) Shows the Extracted Ion Chromatograms (EIC) that were compared with norpinonic acid-DNPH standard m/z 349.

> Table 2 : List of detected compounds as their hydrazone derivatives and their obtained accurate mass data from HPLC/(-)ESI-TOFMS measurements.

	RT	Measured exact	Elemental	Error	Sigma	Carbonyl compound	Mw
	[min]	mass	composition	[ppm]			
	9.3	335.1016	$C_{14}H_{15}N_4O_6$	-5.8	0.0102	$C_{8}H_{12}O_{3}$ (1 carbonyl group)	156
	9.7	335.0995	$C_{14}H_{15}N_4O_6$	0.6	0.0137	$C_{8}H_{12}O_{3}$ (1 carbonyl group)	156
	10.3	349.1150	$C_{15}H_{17}N_4O_6$	1.1	0.0083	$C_9 H_{14} O_3 (1 \text{ carbonyl group})$	170
	11.2	349.1149	$C_{15}H_{17}N_4O_6$	1.2	0.0080	$C_9H_{14}O_3$ (1 carbonyl group)	170
	11.1	405.0549	$C_{13}H_{9}N_{8}O_{8}$	0	0.0029	Fragile compound	-
(15.7	511.1322	$C_{21}H_{19}N_8O_8$	1.8	0.2445	$C_9H_{12}O_2$ (2 carbonyl groups)	152
,	16.2	511.1321	$C_{21}H_{19}N_8O_8$	1.9	0.0090	$C_9H_{12}O_2$ (2 carbonyl groups)	152
	16.3	511.1318	$C_{21}H_{19}N_8O_8$	2.1	0.2178	$C_9H_{12}O_2$ (2 carbonyl groups)	152
	16.5	511.1320	$C_{21}H_{19}N_8O_8$	2.3	0.0583	$C_9H_{12}O_2$ (2 carbonyl groups)	152
	16.7	511.1325	$C_{21}H_{19}N_8O_8$	1.5	0.0137	$C_9H_{12}O_2$ (2 carbonyl groups)	152

Particle-phase:

• The compounds with m/z 335, 349 and 511 were also detected in the particle-phase.

Figure 7: SOA growth curves for nopinone/OH reaction (A) without NO (B) in the presence of NO and (C) β-pinene ozonolysis. Note that the axis have different scales.

R. Atkinson, S.M. Aschmann, Journal of Atmospheric Chemistry 16 (1993) 337. P.J. Lewis, K.A. Bennett, J.N. Harvey, Physical Chemistry Chemical Physics 7 (2005) 1643. References A. Calogirou, N.R. Jensen, C.J. Nielsen, D. Kotzias, J. Hjorth, Environmental Science & Technology 33 (1999) 453. N.L. Ng, J.H. Kroll, M.D. Keywood, R. Bahreini, V. Varutbangkul, R.C. Flagan, J.H. Seinfeld, A. Lee, A.H. Goldstein, Environmental Science & Technology 40 (2006) 2283.