

Investigation of a denuder-filter sampling technique for the determination of carbonyl compounds from monoterpene oxidation

A. Kahnt, Y. Iinuma, O. Böge and H. Herrmann

Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, Leipzig D-04318, Germany

kahnt@tropos.de

Introduction

- Denuders are commonly used to avoid positive artefacts on filter sampling.
- The inner walls of denuders are typically coated with a retaining medium such as XAD-4.
- Gaseous compounds are trapped by the sorption medium due to their high diffusion coefficients and particulate products pass through the tube.
- An additional option is to derivatise the gaseous compounds directly on the denuder surface to improve the collection efficiency, especially for polar compounds such as carbonyl compounds.
- Commonly used derivatisation reagents include 2,4-dinitrophenylhydrazine (DNPH) Possanzini and Di Palo, 1999) or the combination of XAD-4 and O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (Temime et al., 2007) to enhance the collection of carbonyl compounds.

Results and Discussion

Denuder evaluation

- Figure 4 shows recoveries for both 100 the XAD-4 and XAD-4/DNPH de-80 nuders at RH 0 %.
- Good recoveries were found for 60 all compounds except for the XAD-4/DNPH denuder used at 30 40 l/min sampling flow rate.
- 20 Hence, 10 l/min was chosen as the

Parameter I: Flow rate

- Semi-volatile carbonyl compounds are produced during the atmospheric oxidation of different biogenic and anthropogenic volatile organic compounds and can partition between the gas- and particle-phases.
- For understanding their contribution to atmospheric aerosol formation and specific oxidation processes, the simultaneous determination of gas and particle-phase compounds is important.
- In the present study the performance of two sets of denuder/filter sampling systems was evaluated using carbonyl compounds originating from the monoterpene oxidation (campholenic aldehyde, nopinone and pinonaldehyde).
- In addition, the yields of pinonaldehyde and nopinone in the gas- and particle phases were determined from the photooxidation of α -pinene and β -pinene using an optimised denuder/filter sampling system.

Experimental

Denuder evaluation

- To evaluate the optimal denuder operation parameters, selected carbonyl compounds were injected into the 19 m³ IfT chamber (Figure 1) at known concentrations (see Table 1).
- Two sets of parameters were varied:
- I: Flow rate: 5 l/min, 10 l/min and 30 l/min II: Relative humidity: 0 %, 50 % and 60 %

optimal flow rate.

DNPF The off-line derivatisation

XAD-4 DNPH XAD-4 DNPH XAD-4

method (XAD-4 denuders)			5 [l/min]		10 [l/min]		30 [l/min]	
shows consi	istent	Residence time in denuder [s]	1.1		0.5		0.2	
recoveries regardless of flow rates.	Break-through to 2nd DNPH denuder [%]		DNPH	XAD-4	DNPH	XAD-4	DNPH	XAD-4
		Campholenic- aldehyde	2.0	0.4	0.3	0.4	3.5	1.7
		Nopinone	n.d.	n.d.	0.1	0.2	1.1	1.0
		Pinonaldehyde	2.0	1.1	1.0	2.5	2.6	5.2
	Amount detected in filter [ng/m ³]		DNPH	XAD-4	DNPH	XAD-4	DNPH	XAD-4
		Campholenic- aldehyde Noninone	n.d. n.d	n.d. 4 5	n.d. n.d	n.d.	n.d. 14 9	n.d. 22 0
		Pinonaldehyde	n.q.	n.q.	n.q.	n.q.	0.1	3.0

Fig. 4: Denuder performance at different flow rates including break-through and possible artefact formation on filter. In this plot the mean values of two experiments are shown. The bars represent the range of the recovered amount.

ry [%]

Re

- The break-through is in the same range for both XAD-4 and XAD-4/DNPH denuders (see Figure 4 and the Table therein).
- Based on the break-through values, there is a little difference between XAD-4 and XAD-4/DNPH denuders for the trapping efficiencies.
- The reason for the different recoveries may originate from the derivatisation methods (online vs. off-line).

A: XAD-4/DNPH denuder

 Table 1:
 Concentrations of the carbonyl mixture
used in this study.

Compound	Campholenic-	Nopinone	Pinon-	
	aldehyde		aldehyde	
Concentration	23	27	2.4	
[ppb]				

- DMPS generator PTR-MS Air humidifier Denuder GC-MS Filter HPLC-MS Compressor CE-MS
- Diagram of the gas- and aerosol-phase Fig. 1 instrumentation of the IfT aerosol chamber.
- The gas-phase samples were collected using 40 cm long five channel denuders.
- The break-through for the denuders was determined using denuders connected in series (see Figure 2a and 3a).
- The absorption on the filter material was determined from a PTFE filter placed after the denuder (see Figure 2b and 3b).

- Fig. 2 (left) and Figure 3 (right): A schematic diagram of the denuder/filter sampling. left: XAD-4 and right: XAD-4/DNPH coated denuders. system used in this study.
- DNPH denuders were directly extracted with acetonitrile, whereas the XAD-4 denuders were extracted with methanol and derivatised off-line.
- The extracts were purified using solid phase extraction cartridges (SPE) and were analysed with HPLC/ESI-TOFMS.

- As shown in Figure 5 the relative humidity also plays an important role due to available H_2O^+ that acts as a catalyst for the derivatisation reaction.
- Higher recoveries and less variability were obtained at higher RH.

Application of denuders to chamber studies

- The yields determined using the XAD-4/ DNPH denuder agree well with values reported in the literature (see Table 3).
- Both pinonaldehyde and nopinone were below quantification or detection limits in the particle-phase.

- This plot also shows the mean values of two experiments with bars representing the maximum and minimum.
- Due to low HC concentrations used in this study, carbonyl compounds most likely stayed in the gas-phase and did not partition into the particle-phase.
- Yields of the major carbonyl compounds from α -pinene/OH (left) and β -pinene/OH (right) oxidation Table 3: determined in this study.

Temime, B., et al. (2007), Environmental Science and

Wisthaler, A., et al. (2001), Atmospheric Environment,

Technology, 41, 6514-6520.

35, 6181-6191.

sation efficiency and possible losses during the sample

Chamber experiments

- α -pinene and β -pinene were photooxidised in the presence of NO_x. For the experimental conditions see Table 2.
- Gas- and particle-phase products were collected under optimal denuder/filter sampling conditions determined in this study. (RH 50 %; sampling flow rate 10 l/min).
- Two sets of denuders (XAD-4 and XAD-4/ DNPH coated denuders) were used to compare their performance.
- An additional XAD-4/DNPH denuder was connected after the filter holder to determine a positive artefact on a filter.
- volume Quantification of the first generation oxidation Seed pa products (nopinone and pinonaldehyde) in gasand particle-phases was performed using the authentic star which were derivatised under the same conditions as the samples.

ble 2:	Experimental conditions for the
	photooxidation.

photooxidation.						
	α -pinene	β-pinene				
Initial HC concentration [ppb]	50	50				
Consumed HC Concentration [ppb]	20	32				
OH source	MeONO/NO/ UV-light	MeONO/NO UV-light				
RH [%]	48 ±1	50±1				
T [°C]	22 ± 0.3	21±0.3				
Reaction time [h]	0.6	0.8				
Sampling time [h]	3	3				
Sampling volume [m ³]	1.8	1.8				
Seed particles ntic standards	$\left \begin{array}{c} (\mathrm{NH}_4)_2 \mathrm{SO}_4 \\ \mathrm{H}_2 \mathrm{SO}_4 \end{array} \right $	$ (NH_4)_2 SO_4 H_2 SO_4$				

inonaldehyde	Molar Yield	References		Nopinone	Molar Yield	References
AD-4/DNPH denuder AD-4 denuder n-line PTR-MS ENAX TA, GC-FID	$0.26 \\ 0.14 \\ 0.34 \pm 0.09 \\ 0.28 \pm 0.05$	This study This study Wisthaler <i>et al</i> . Aschmann <i>et al</i> .	(2001) (2002a	Gas-phase XAD-4/DNPH denuder XAD-4 denuder On-line FT-IR)On-line PTR-MS	$\begin{array}{c} 0.19\\ 0.23\\ 0.25\pm 0.05\\ 0.25\pm 0.03\end{array}$	This study This study Larsen <i>et al.</i> (2001) Wisthaler <i>et al.</i> (2001)
article-phase TFE filter connected fter XAD-4 enuder	n.q.			Particle-phase PTFE filter connected after XAD-4 denuder	n.d.	This study
AD-4/DNPH enuder connected fter filter	0.005		Sui	nmary	.1 1 •	
Carter Control Control of Control of Control Section 2017 schmann, S. M., et al. (2002), <i>Journal of Geophysical</i> esearch-Atmospheres, 107. arsen, B. R., et al. (2001), <i>Journal of Atmospheric</i> hemistry, 38, 231-276. ossanzini, M., and V. Di Palo (1999), hromatographia, 49, 161-165.			denuders improves the collection efficiency under certain conditions.			
			To obtain reliable and quantitative results, standards needs to be derivatised under the same conditions (RH, flow rate) as samples to include the different derivati-			

preparation procedure.