

NO₃-radical reactions of poly-substituted phenols in aqueous solution

Thomas Schaefer. Dirk Hoffmann and Hartmut Herrmann

Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig, Germany

 $\rightarrow NO_2 + OH$

 $\rightarrow NO_2 + H_2O$

Motivation and Background

- Free radical chemistry in the tropospheric aqueous phase
- Nighttime oxidation of organic compounds such as phenols by NO₃

Substituted phenols in the troposphere

- · Sources: Emissions from combustion and industrial processes or secondary formation from oxidation of benzene derivatives
- Toxic and phytotoxic compounds
- Tracer compounds for biomass burning

Scope of study

- Multiphase chemistry still poorly understood and characterized
- Kinetic and thermodynamic data for tropospheric chemical modeling
- Investigation of the influence of the different substituents for the NO₃-radical reaction with phenolic compounds in aqueous solution

Results and Discussions

	2,6- Dimethylphenol	2,6- Dichlorophenol	2,6- Dihydroxyphenol	2,6- Dinitrophenol	2,6- Dimethoxyphenol	4-Hydroxy-3,5- dimethoxybenzaldehyde	4-Hydroxy-3,5- dimethoxybenzoic acid	4-Hydroxy-3- methoxybenzaldehyde	4-Hydroxy-3- methoxybenzoic acid	3-Hydroxy-4- methoxybenzoic acid
	H,C CH ₂ CH ₃			0,8	H ₁ C ^O C ^H	HAC THE REPORT OF THE REPORT O	H,C ^C CH, OCH, OCH,	of Horison		
$k_{298K} [M^{-1} s^{-1}]$	$(1.8 \pm 0.3) \cdot 10^9$	$(1.3 \pm 0.2) \cdot 10^9$	$(1.7 \pm 0.2) \cdot 10^9$	$(2.8 \pm 0.9) \cdot 10^8$	$(1.6 \pm 0.4) \cdot 10^9$	$(1.7 \pm 0.3) \cdot 10^9$	$(1.4 \pm 0.6) \cdot 10^9$	$(1.1 \pm 0.2) \cdot 10^9$	$(1.0 \pm 0.3) \cdot 10^9$	$(1.3 \pm 0.4) \cdot 10^9$
E _A [kJ mol ⁻¹]	17 ± 6	14 ± 5	9 ± 5	18 ± 9	16 ± 7	18 ± 4	19 ± 10	16 ± 4	15 ± 4	11 ± 4
A [M-1 s-1]	$(1.5 \pm 0.1) \cdot 10^{12}$	$(3.9 \pm 0.3) \cdot 10^{12}$	$(6.9 \pm 0.6) \cdot 10^{10}$	$(3.2 \pm 0.4) \cdot 10^{11}$	$(1.0 \pm 0.1) \cdot 10^{12}$	$(2.8 \pm 0.2) \cdot 10^{12}$	$(2.8 \pm 0.4) \cdot 10^{12}$	$(7.8 \pm 0.4) \cdot 10^{11}$	$(3.8 \pm 0.4) \cdot 10^{11}$	$(9.0 \pm 0.6) \cdot 10^{10}$
ΔH [‡] [kJ mol ⁻¹]	15 ± 5	12 ± 4	7 ± 4	15 ± 8	14 ± 6	16 ± 4	16.1 ± 8.2	14 ± 3	12 ± 3	8 ± 3
ΔS [‡] [J mol ⁻¹ K ⁻¹]	$-(20 \pm 2)$	$-(31 \pm 2)$	$-(46 \pm 4)$	$-(33 \pm 5)$	$-(23 \pm 2)$	$-(15 \pm 1)$	$-(15 \pm 2)$	$-(26 \pm 1)$	$-(32 \pm 2)$	$-(44 \pm 3)$
∆G [‡] [kJ mol ⁻¹]	21 ± 9	21 ± 9	21 ± 13	25 ± 16	21 ± 11	20 ± 6	21 ± 13	22 ± 6	22 ± 8	21 ± 9
E _{HOMO} [eV] ^[5]	-8.9631	-9.1938	-8.8097	-10.6995	-8.7809	-9.1109	-9.5300	-9.4144	-9.4118	-9.2175
BDE [kJ mol-1]	357.316	370.3[6]	a358.1/b349.3/c344.1181	397.3161	350.3161	-	-	356.9191	357.3191	357.7191

Experimental

Conclusions

- · Correlations indicate that direct electron transfer in aqueous solution is the main reaction mechanism
- Differences in the rate constants are attributed to different contributions of the proposed reaction mechanisms and to the substituent effects
- Atmospheric lifetimes of the investigated biomass burning tracers^[7] should be carefully evaluated in modelling studies applying the fast NO3 rate constants in aqueous solution obtained as well as a proper phase transfer description
- The obtained equations may be applied for the prediction of rate constants for reaction of nitrate radical with substituted phenols in aqueous solution

Competitive reaction mechanisms

Figure 3: Possible reaction mechanism of the nitrate radical with substituted phenols in aqueous solution^[1]

 $lg(k_{H}/[M^{-1}s^{-1}]) = (37.7 \pm 5.8) + (-0.082 \pm 0.015) \cdot BDE [kJ mol^{-1}]$

- Ratios of (k_{H cal}/k_{298K}) in Table 2 provide the theoretical contribution of H-atom abstraction
- · The ratios indicate the subordinate role of the Hatom abstraction mechanism with the exceptions of the hydroxyl substituted phenols

Rate constant k _{298K} [M ⁻¹ s ⁻¹]											
Compound	-NO ₂	-Cl	-CH ₃	-OCH ₃	-OH						
2-	$(8.3 \pm 1.4) \cdot 10^{8*}$	$(2.9 \pm 0.3) \cdot 10^{8*}$	$(8.5 \pm 0.2) \cdot 10^{8*}$	$(1.1 \pm 0.1) \cdot 10^{9*}$	$(5.6 \pm 0.8) \cdot 10^{8*}$						
4-	$(1.4 \pm 0.2) \cdot 10^{9**}$	$(1.0 \pm 0.4) \cdot 10^{9*}$	$(1.8 \pm 0.3) \cdot 10^{9**}$	$(2.8 \pm 0.5) \cdot 10^{9**}$	$(1.6 \pm 0.6) \cdot 10^{9**}$						
2,6-	$(2.8 \pm 0.9) \cdot 10^8$	$(1.3 \pm 0.2) \cdot 10^9$	$(1.8 \pm 0.2) \cdot 10^9$	$(1.6 \pm 0.2) \cdot 10^9$	$(1.7 \pm 0.2) \cdot 10^9$						
Rate constant ratios											
k _{H,calc} /k ₂₋ [%]	6	11	12	40	>100						
k _{H,calc} /k ₄₋ [%]	0	2	5	41	>100						
k _{H.calc} /k _{2.6} . [%]	0	2	14	59	>100/88/17						

* Barzaghi 2004 [2], ** Weller 2006 [3]

BDE [kJ mol⁻¹

Figure 4: Evans-Polyani type correlation (log k₂₉₈) vs. BDE) for the rate constants in Table

as well as literature values [1,2]

Electron transfer

- E_{HOMO} is the energy of the highest occupied molecule orbital and a measure for the the electron donor capacity
- For pure electron transfer reactions (red regression line) compounds, such as Phenol^[3], 4-Nitrophenol^[4], 4-Fluorophenol^[3], 4-Bromophenol^[3], 4-Chlorophenol^[3], 4-Hvdroxybenzoic acid^[4],

2,6-Dinitrophenol and 2,6-Dichlorophenol with a ratios of (k_{H.cal}/k_{298K}) smaller 5% were selected

- Comparison of the rate constants in Table 2 shows that the rate constants are dominated by electronic and steric effects
- Compounds with electron withdrawing substituents react slower because of the destabilization of the formed intermediate see Figure 3
- The exclusion of H-atom abstraction as an possible reaction pathway indicate that the investigated phenols react mainly with the electron transfer mechanism

References

[1] H. Herrmann, R. Zellner, Reactions of NOz-Radicals in Aqueous Solution in N-Centered Radicals; Z.B. Alfassi (Ed.) Wiley: New York, 1998, 291. [2] Ph. G. deSemainville, D. Hoffmann, C. George and H. Herrmann, Phys. Chem. Chem. Phys., 2007, 9, 958. [3] P. Barzaghi and H. Herrmann, Phys. Chem. Chem. Phys., 2004, 4, 3669. [4] C. Weller, Diploma Thesis, University Freiberg, 2006. [5] calculated with Hyper Chem Released 7.5 Inc. Hypercube. [6] M.M. Bizarro, B.J. Costa Cabral, R.M. Borges de Santos and J.A.M. Simoes, Pure Appl. Chem., 1999, 71, 1249. [7] B. R. T. Simoneit, Appl. Geochem., 2002, 17, 129. [8] H.F. Ji, and H.Y. Zhang, New J. Chem., 2005, 29(4), 535. [9] J.S. Wright, E.R. Johnson, and G.A. DiLabio, J. Am. Chem. Soc., 2001, 123(6), 1173.

Outlook

- Further measurements of other 2,6- and 2,4-substituted phenolic reactants towards NO₃ as well as OH in the aqueous phase
- Spectroscopic investigations to study the formation of transient reaction products (e.g. organic peroxy radicals)
- Product studies in order to identify and quantify the oxidation products formed in the presence of NO₃ and/or OH

