

LEIBNIZ INSTITUTE FOR TROPOSPHERIC RESEARCH

Parameterization of new particle formation starting from $OH + SO_2$

T. Berndt¹, F. Stratmann¹, M. Sipilä^{1,2,4}, J. Vanhanen², T. Petäjä², A. Grüner¹, G. Spindler¹, R. Lee Mauldin III³, M. Kulmala², J. Curtius⁵ and J. Heintzenberg¹

¹Leibniz-Institut für Troposphärenforschung e.V., Permoserstr. 15, 04318 Leipzig, Germany
 ²Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014, Finland
 ³Atmospheric Chemistry Division, Earth and Sun Systems Laboratory, National Center for Atmospheric Research, Boulder, USA
 ⁴Also at: Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014, Finland
 ⁵Institute for Atmospheric and Environmental Sciences, Goethe-University
 Frankfurt am Main, 60438 Frankfurt am Main, Germany

Introduction

Simultaneous measurements of newly formed ultra-fine particles and H_2SO_4 in the lower troposphere reveal that new particle formation is strongly connected to the occurrence of H_2SO_4 with concentrations of about $10^5 - 10^7$ molecule cm⁻³ and the production rate of new particles can be described by a power law equation for H_2SO_4 with an exponent in the range of 1 - 2 (Weber *et al.*, 1996, Kulmala *et al.*, 2006).

From our laboratory, using the reaction of OH radicals with SO₂ for "H₂SO₄" formation (Berndt *et al.*, 2005), experimental evidence for the formation of new particles was found for "H₂SO₄" concentrations of about 10⁷ molecule cm⁻³. Here, "H₂SO₄" stands for all products arising from the reaction of OH radicals with SO₂.

Experimental setup

Experiments have been performed in the atmospheric pressure flow-tube IfT-LFT (i.d. 8 cm; length 505 cm) at 293 +/- 0.5 K. Gasphase analysis was carried out using analyzers for O₃ and SO₂ (Thermo Environmental Instruments: 49C and 43C) and CI-MS for H₂SO₄. Newly formed particles were detected by a butanol-based UCPC (TSI 3025), a H₂O-based UCPC (TSI 3786), a pulse-height CPC (Sipilä *et al.*, 2008) and a mixing-type CPC (Vanhanen *et al.*, 2009). NH₃ concentrations in the carrier gas were measured before entering the flow tube as well as at the outlet by means of a trace gas monitor TGA 310 (OMNISENS) with a stated detection limit of 2.5 \cdot 10⁹ molecule cm⁻³.

UNIVERSITY OF HELSINKI

The analysis of integral number measurements by means of commercially available UCPCs revealed that measured slopes of log(N) vs. $log(["H_2SO_4"])$ were affected by the decreasing size-dependent counting efficiency of the UCPCs used for dp < 3nm leading to an overestimation of the slopes.

The aim of this study is to find out the optimal experimental conditions for the detection of the majority of nucleated particles with appropriate methods. Such data represent the basis for a reliable description of the overall process of nucleation in term of a power equation.

Formation of ["H ₂ SO ₄ "]	
$O_3(photolysis) \longrightarrow \dots \longrightarrow$	2 OH
$OH + CO(H_2) \longrightarrow$	products
$OH + 1,3,5$ -trimethylbenzene \longrightarrow	products
$OH + SO_2 \longrightarrow \dots \longrightarrow$	"H ₂ SO4"
"H ₂ SO ₄ " \rightarrow	wall

Head of the flow tube: Non-irradiated first section with the gas inlets as well as the gas mixing devices.

- new particle formation is not influenced by organics (same results using CO, H_2 or organic scavenger for OH radicals) - $[OH] = (4 - 300) \cdot 10^5$ molecule cm⁻³

(4)

Figure 4a/b: Residence time of 32 (42) sec. Particle counting by means of PH-CPC (dp > 1.5 nm). Particle measurements

modeled [" H_2SO_4 "] (molecule cm⁻³)

CI-MS $[H_2SO_4]$ vs. modeled $["H_2SO_4"]$ shows a clear curvature for relatively high H_2SO_4 concentrations. This behaviour is more pronounced in experiments with high residence time in the tube. Deviation from linearity can be explained roughly by an additional 2^{nd} order process consuming H_2SO_4 .

Importance of detection efficiency

Threshold H_2SO_4 concentrations needed for nucleation as well as the slope log(N) vs. log(["H₂SO₄"]) are strongly dependent on the counting efficiency of the CPC used. "High sensitivity counters" have a cut-off size of about 1.5 nm.

have been performed after stabilisation of NH_3 concentration in the tube (measurement at inlet and outlet).

NH₃ is of less importance for nucleation using atmospheric conditions

Parameterization and application to the atmosphere

Overall best fit (20° C, residence time: 88 sec, dp > 1.5 nm):

 $J = 1 \cdot 10^{-19} \text{ cm}^{-3} \text{ s}^{-1} ([H_2 \text{SO}_4]/\text{cm}^{-3})^{1.86} ([H_2 \text{O}]/10^{15} \text{ cm}^{-3})^{3.08}$ model: 20°C, r.h. 61% $[H_2O]: 3.35 \cdot 10^{17} \text{ cm}^{-3}$ 10^{3} s^{-1} 10^{2} (cm⁻³ model: 20°C, r.h. 22% $[H_2O]: 1.2 \cdot 10^{17} \text{ cm}^{-3}$ nucleation rate 10 10^{-2} ambient measurements Heidelberg 10^{-1} Hyytiälä 10^{-4} 10^{9} 10^{3} 10° 10^{-1}

$[H_2SO_4] \text{ or } ["H_2SO_4"] \text{ (molecule cm}^{-3})$

References:

Berndt, T. et al., Science, 307, 698, (2005).
Kulmala, M., et al., Atmos. Chem. Phys., 6, 787, (2006).
Sipilä, M. et al., Atmos. Chem. Phys., 8, 4049, (2008).

Riipinen, I. et al., Atmos. Chem. Phys., 7,1899, (2007).Vanhanen, J. et al., ICNAA (2009).Weber, R.J. et al., Chem. Eng. Comm. 151, 53, (1996).

Figure 7: Comparison of J vs. $[H_2SO_4]$ or [" H_2SO_4 "] data measured either in lower atmosphere or in laboratory. Ambient measurements from Heidelberg (28.2. - 3.4.2004) and from Hyytiälä (5.4. - 16.5.2005) were adopted from Riipinen et al. (2007). Ambient data can be described with a power-law dependence on H_2SO_4 with typical exponents of 1 - 2, cf. Riipinen et al. (2007).