# Temperaturabhängigkeit der Reaktion des NO<sub>3</sub>-Radikals gegenüber *para*substituierten Phenolen in wässriger Lösung



Christian Weller, Dirk Hoffmann und Hartmut Herrmann

Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig



Radikalchemie in der wässrigen Phase der Troposphäre

- Nächtliche Oxidation von organischen Verbindungen (z.B. Phenole) durch NO<sub>3</sub>
- Substituierte Phenole in der Troposphäre
- Primäre Quellen: Emissionen aus Verbrennungsprozessen
- Sekundäre Quellen: Bildung durch Oxidation von Benzolderivaten
- ➔ Toxische und phytotoxische Verbindungen
- → Auftreten in Regen, Wolken und Nebel

#### **Reaktionen von Phenolen mit NO<sub>3</sub>-Radikalen**

→ Konkurrierende Reaktionsmechanismen

### **Experimentelle Methoden**



#### NO<sub>3</sub>-Radikal-Erzeugung

• Laser-Photolyse von Nitratanionen bei einer Wellenlänge von  $\lambda = 248$  nm und pH = 0.5 (HClO<sub>4</sub>)

Leibniz

- $NO_3^- + hv + H^+ \longrightarrow NO_2 + OH$
- Reaktion von OH mit undissoziierter HNO<sub>3</sub> bildet NO<sub>3</sub>
  - $HNO_3 + OH \longrightarrow NO_3 + H_2O$

#### Kinetische Untersuchungen

- Reaktion von NO<sub>3</sub> mit phenolischem Reaktand unter Bedingung pseudo erster Ordnung
- Messung des zeitlichen Abfalls der NO<sub>3</sub> Konzentration mit He-Ne Laser bei NO<sub>3</sub> Absorptions-Maximum (Wellenlänge  $\lambda = 632$  nm)

#### Ziel dieser Studie

- Kinetische and thermodynamische Daten f
  ür troposph
  ärische chemische Modellierung bereitstellen
- Reaktivitätskorrelationen 
  Informationen über die verschiedenen stattfindenden Reaktionsmechanismen



- Bestimmung von Geschwindigkeitskonstanten zweiter Ordnung zwischen 278 and 318 K
- Abb. 1:Experimenteller Messaufbau: Laser-Photolyse-Laser-<br/>Lang-Weg Absorptions- (LP-LPA) Apparatur

**Konkurrierende Reaktionsmechanismen** 

### Kinetische und thermodynamische Ergebnisse und Reaktivitätsdiskussion

**<u>Tab. 1</u>**: Aktivierungsenergie ( $E_A$ ), Aktivierungsentropie ( $\Delta S^{\ddagger}$ ), freie Aktivierungsenthalpie ( $\Delta G^{\ddagger}$ ), gemessene Geschwindigkeitskonstanten bei 298K ( $k_{obs}$ ), Bindungsdissoziationsenergien (BDE) der am leichtesten abspaltbaren H-Atome, berechnete theoretische Geschwindigkeitskonstante einer reinen H-Abstraktion ( $k_{H calc}$ ), Verhältnis von  $k_{H calc}$  zu  $k_{obs}$ 

| Vorbindung                | EA                      | $\Delta S^{\ddagger}$                  | $\Delta \mathbf{G}^{\ddagger}$ | k <sub>obs. 298</sub>      | <b>BDE</b> <sup>a</sup> | Bin-               | k <sub>H calc</sub> b   | k <sub>H calc</sub> / k <sub>obs</sub> |
|---------------------------|-------------------------|----------------------------------------|--------------------------------|----------------------------|-------------------------|--------------------|-------------------------|----------------------------------------|
| verbindung                | [kJ mol <sup>-1</sup> ] | [J K <sup>-1</sup> mol <sup>-1</sup> ] | [kJ mol <sup>-1</sup> ]        | $[M^{-1}s^{-1}]$           | [kJ mol <sup>-1</sup> ] | dung               | $[M^{-1} s^{-1}]$       | [%]                                    |
| 4-Nitrophenol             | $14,0 \pm 2,5$          | -(31,1 ± 1,2)                          | $20,7\pm4,6$                   | $(1,4 \pm 0,4) \cdot 10^9$ | 396,3                   | O-H                | $1,62 \cdot 10^{5}$     | 0,01                                   |
| 4-Hydroxybenzoe-<br>säure | $13,2 \pm 2,5$          | -(32,9 ± 1,2)                          | 20,5 ± 4,6                     | $(1,6 \pm 0,5) \cdot 10^9$ | 360 <sup>[3]</sup>      | O-H                | $1,82 \cdot 10^{8}$     | 11,3                                   |
| 4-Methylphenol            | $5,8\pm2,0$             | -(56,9 ± 1,9)                          | $20,\!3\pm7,\!5$               | $(1,7 \pm 0,3) \cdot 10^9$ | 363,3                   | O-H                | 9,61 · 10 <sup>7</sup>  | 5,8                                    |
|                           |                         |                                        |                                |                            | 357 <sup>[4]</sup>      | CH <sub>2</sub> -H | $9,75 \cdot 10^{8}$     | 58,8                                   |
| 4-Aminophenol             | 9,8 ± 3,2               | -(42,2 ± 2,1)                          | 19,9 ± 7,4                     | $(2,0 \pm 0,3) \cdot 10^9$ | 331,3                   | O-H                | 4,69 · 10 <sup>10</sup> | > 100                                  |
| 4-Methoxyphenol           | $14,6 \pm 5,0$          | -(24,3 ± 1,8)                          | 19,4 ± 8,1                     | $(2,8 \pm 0,5) \cdot 10^9$ | 349,3                   | O-H                | $1,44 \cdot 10^{9}$     | 51,3                                   |



<u>Abb. 2:</u> Mögliche Reaktionsmechanismen für substituierte Phenole mit NO<sub>3</sub> in wässriger Lösung die zugleich mit unterschiedlicher Schnelligkeit ablaufen können → unterschiedlicher Beitrag zur gemessenen Geschwindigkeitskonstante, nach [1]

- <sup>a</sup> phenolische BDE aus [2], <sup>b</sup> berechnet mit Korrelation lg k<sub>H</sub> ~ BDE aus [1], zu sehen in Abb. 4
- Substituierte Phenole besitzen unterschiedliche Geschwindigkeitskonstanten k<sub>obs</sub> in der Größenordnung 10<sup>9</sup> M<sup>-1</sup>s<sup>-1</sup>

Sind die unterschiedlichen k<sub>obs</sub> verschiedenen Reaktionsmechanismen zuzuschreiben?

- Vergleich von  $E_A$  und  $\Delta S^{\ddagger}$  mit  $k_{obs}$  erklärt weder unterschiedliche  $k_{obs}$  oder weist auf einen bestimmten Mechanismus hin
- Negative ∆S<sup>‡</sup> bei allen gemessenen Phenolen → Ordnungsgrad des aktivierten Komplexes höher als der der Reaktanden
- Je höher  $k_{obs}$ , desto geringer die freie Aktivierungsenthalpie ( $\Delta G^{\ddagger}$ )
- Anwendung von Reaktivitätskorrelationen, um mehr über den Beitrag der verschiedenen Reaktionsmechanismen herauszufinden

Sind die gemessenen E<sub>A</sub> und k<sub>obs</sub> abhängig von der H-Atom Bindungsdissoziationsenergie (BDE)?





Sind die gemessenen  $k_{obs}$  abhängig von der freien Reaktionsenthalpie  $\Delta G_R$  (Marcus-Theorie)?

→ Hinweis auf Beitrag eines direkten Elektronentransfers!



- Abb. 3:Gemessene  $E_A$  und Literaturwerte [1,3,5, 6,7] alsFunktion der BDE
- Gemessene Phenole besitzen niedrigste E<sub>A</sub> im Vergleich zu anderen aromatischen und aliphatischen Verbindungen
- Abb. 4:Logarithmus von  $k_{obs}$  und Literaturwerten [1,7] bei 298 Kpro abspaltbares H-Atom  $lg(k_H)$  als Funktion der BDE
- Höchste gemessene k<sub>obs</sub> der Phenole im Vergleich mit anderen Verbindungsklassen
  Regressionsgerade nur für H-Abstraktionsreaktionen aliphatischer und zyklischer Verbindungen [1]: lg (k<sub>H</sub>) = (38,5 ± 5,6) – (0,084 ± 0,014) · BDE [kJ mol<sup>-1</sup>] mit n = 37; R = 0,89
- Regressionsgerade nur f
  ür H-Abstraktionsreaktionen der Aliphaten:
  - $E_A [kJ mol^{-1}] = (0,39 \pm 0,2) \cdot BDE [kJ mol^{-1}] (123 \pm 86)$ mit n = 12; R = 0,75
- 4-Methoxy-, 4-Amino-, 4-Methylphenol, 4-Hydroxybenzoesäure befinden sich nahe der Regressionsgeraden in Abb.3 und 4
   Möglichkeit eines Beitrages der H-Abstraktion
- $E_A$  und lg  $k_H$  von 4-Nitrophenol scheinen unabhängig von der BDE (Abb.3 und 4)  $\rightarrow$  Beitrag einer H-Abstraktion unwahrscheinlich
- Alle  $k_{obs}$  der untersuchten Phenole zeigen eine Abhängigkeit von  $\Delta G_R$  nach der Marcus-Theorie  $\rightarrow$  Beitrag des direkten Elektronentransfers zur Gesamtreaktivität ist ebenfalls möglich
- Geschwindigkeitskonstanten der Aromaten und Benzoesäuren mit  $\Delta G_R$  größer als -40 kJ mol-1 lassen sich nicht von der Marcus-Theorie beschreiben  $\rightarrow$  Hinweis auf Additions-Mechanismus [1]

## Schlussfolgerungen

- Untersuchte Phenole reagieren über gemischte Reaktionsmechanismen mit NO<sub>3</sub>
- Mögliche Beiträge der verschiedenen Mechanismen in Tab. 2
- Möglichkeit zur exakteren Aussage über Mechanismen mit schnellen Spektroskopischen Untersuchungen und ab-initio Berechnungen

| Varbindung           | H-Atoma                | bstrakt | ion am | Direkter           | Addition/   |  |
|----------------------|------------------------|---------|--------|--------------------|-------------|--|
| verbindung           | Substituent            |         | О-Н    | Elektronentransfer | Elimination |  |
| 4-Nitrophenol        | $NO_2$                 |         | 0      | XX                 | Х           |  |
| 4-Hydroxybenzoesäure | СОО-Н                  | 0       | Х      | Х                  | Х           |  |
| 4-Methylphenol       | CH <sub>2</sub> -H     | X       | Х      | X                  | Х           |  |
| 4-Aminophenol        | $NH_2$ -H <sup>+</sup> | XX      | Х      | X                  | X           |  |
| 4-Methoxyphenol      | OCH <sub>2</sub> -H    | 0       | Х      | Х                  | Х           |  |

### Literatur

- [1] H. Herrmann und R. Zellner in Alfassi, *N-centered radicals*, Wiley: New York, **1998**, 291
- 2] R.M.B. Dos Santos und J.A.M. Simoes, *J.Phys.Chem.Ref.Data*, **1998**, 27, 707
- [5] T. Umschlag et al., *Phys. Chem. Chem. Phys.*, **2002**, 4, 2975
- 4] H. Herrmann et al., *Faraday Discuss.*, **1995**, 100, 129
- [5] H. Herrmann, *Chem.Rev.*, **2003**, 103, 4691
- 6] P. Barzaghi und H. Herrmann, *Phys. Chem. Chem. Phys.*, **2004**, 4, 3669
- ] C. Weller et al., **2005**, Poster, 6<sup>th</sup> Informal conference on atmospheric & molecular science, Helsingor