Temperature dependent reactions of the NO₃-radical with *para***substituted phenols in aqueous solution**

Christian Weller, Dirk Hoffmann and Hartmut Herrmann

Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig, Germany

Motivation and background

Free-radical chemistry in the aqueous tropospheric phase

- Nighttime oxidation of organic compounds such as phenols by NO₃ Substituted phenols in the troposphere
- Primary sources: Emissions from combustion and industrial processes
- Secondary sources: Formation from oxidation of benzene derivatives
- ➔ Toxic and phytotoxic compounds
- → Occurrence in rain, clouds and fog

Reactions of phenols with NO₃-radicals

→ Competitive reaction mechanisms

Experimental

NO₃-radical generation

- Laser flash photolysis of nitrate anions at wavelength of $\lambda = 248$ nm at pH = 0.5 (HClO₄)
 - $NO_3^- + hv + H^+ \longrightarrow NO_2 + OH$
- Reaction of OH with undissociated HNO_3 to form NO_3

 $HNO_3 + OH \longrightarrow NO_3 + H_2O$

Kinetic investigations

- Reaction of NO_3 with the organic reactant
- Observation of the temporal decline of the NO₃ concentration with He-Ne laser at NO₃ absorption maximum with wavelength $\lambda = 632$ nm

Scope of study

- Kinetic and thermodynamic data for tropospheric chemical modeling
- Reactivity correlations \rightarrow Insight into the different reaction mechanisms involved

Figure 2: Laser photolysis long path absorption set-up (LP-LPA)

Kinetic and thermodynamic results and reactivity discussion

<u>Table 1</u>: Activation energy (E_A), activation entropy (ΔS^{\ddagger}), free energy of activation (ΔG^{\ddagger}), observed rate constants at 298 K, bond dissociation energy (BDE) of the easiest abstractable H-atoms, calculated theoretical rate constant of a pure H-abstraction ($k_{H calc}$), ratio of $k_{H calc}$ to the observed rate constant for the investigated phenols

Compound	EA	ΔS^{\ddagger}	ΔG^{\ddagger}	k _{obs 298}	BDE ^a	Bond	k _{H calc} b	k _{H calc} / k _{obs}
	[kJ mol ⁻¹]	[J K ⁻¹ mol ⁻¹]	[kJ mol ⁻¹]	[M ⁻¹ s ⁻¹]	[kJ mol ⁻¹]		$[M^{-1} s^{-1}]$	[%]
4-Nitrophenol	14.0 ± 2.5	-(31.1 ± 1.2)	20.7 ± 4.6	$(1.37 \pm 0.4) \cdot 10^9$	396.3	О-Н	$1.62 \cdot 10^{5}$	0.01
4-Hydroxybenzoic acid	13.2 ± 2.5	-(32.9 ± 1.2)	20.5 ± 4.6	$(1.61 \pm 0.5) \cdot 10^9$	360[3]	O-H	$1.82 \cdot 10^{8}$	11.3
4-Methylphenol	5.8 ± 2.0	$-(56.9 \pm 1.9)$	20.3 ± 7.5	$(1.66 \pm 0.3) \cdot 10^9$	363.3	О-Н	9.61 · 10 ⁷	5.8
					357 ^[4]	CH ₂ -H	$9.75 \cdot 10^{8}$	58.8
4-Aminophenol	9.8 ± 3.2	-(42.2 ± 2.1)	19.9 ± 7.4	$(2.02 \pm 0.3) \cdot 10^9$	331.3	О-Н	$4.69 \cdot 10^{10}$	> 100
4-Methoxyphenol	14.6 ± 5.0	-(24.3 ± 1.8)	19.4 ± 8.1	$(2.81 \pm 0.5) \cdot 10^9$	349.3	O-H	$1.44 \cdot 10^{9}$	51.3

Figure 1: Possible reaction mechanisms for substituted phenols with NO₃ in aqueous solution which may occur at the same time at different speeds \rightarrow different contribution to overall measured rate constant, after [1]

^a phenolic BDE from [2], ^b calculated with regression line lg $k_{\rm H} \sim$ BDE from [1], displayed in Fig. 4

• Substituted phenols have different k_{obs} in the order of 10⁹ M⁻¹s⁻¹

Are the different k_{obs} due to different reaction mechanisms?

- Intercomparison of E_A and ΔS^{\ddagger} with k_{obs} cannot explain the differences in k_{obs} or point towards a certain reaction mechanism
- Negative ΔS^{\ddagger} of all measured phenols indicates an activated complex that is more ordered than the reactants
- Higher rate constants correspond to lower free energy of activation (ΔG^{\ddagger})
- → Use of reactivity correlations to learn more about contribution from different reaction mechanisms

Are the measured activation energies or rate constants a function of the H-atom bond dissociation energy (BDE)?

Indication of H-atom abstraction!

 $\frac{\text{BDE} [kJ \text{ mol}^{-1}]}{\text{Figure 4:}}$ Plot of logarithm of the measured and literature rate constants [1,7] at 298 K divided by the number of easiest abstractable H-atoms lg(k_H) against the BDE

 \cap

-Hydroxybenzoic acid

-Methylphenol (CH₂-H)

П

 ∇

4-Aminophenol

Aliphatics

Phenols

Benzoic acids

Phenols this work Cyclic compounds

 $(k_{\rm H} [M$

• Highest measured rate constants of phenols in comparison with other classes of compounds

Are the measured rate constants a function of the Gibbs free energy of reaction (Marcus-Theory)?

→ Indication of direct electron transfer!

- **Figure 5:** Plot of logarithm of the measured and literature rate constants [1,3,5,6] at 298 K as a function of the Gibbs free energy of reaction (ΔG_R), solid line: Marcus-curve fit to the Anions [1], dashed line: empirical correlation for para-and mono-substituted aromatics [this work]
 - All rate constants of the investigated phenols are a function of ΔG_R according to the Marcus-theory \rightarrow contribution to the reactivity from direct electron transfer is also likely

among other aromatics and aliphatic compounds

Measured phenols have lowest activation energies

[1,3,5, 6,7] versus bond dissiciation energy

- Regression line only for H-abstraction reactions of aliphatics:
 - $E_A [kJ mol^{-1}] = (0.39 \pm 0.2) \cdot BDE [kJ mol^{-1}] (123 \pm 86)$ with n = 12; $R^2 = 0.75$
- Regression line only for H-abstraction reactions of aliphatic and cyclic compounds [1]:
 - lg (k_H) = (38.5 ± 5.6) (0.084 ± 0.014) · BDE [kJ mol⁻¹] with n = 37; R² = 0.89
- 4-Methoxy-, 4-Amino-, 4-Methylphenol, 4-Hydroxybenzoic acid are close to the regression lines in both Fig.3 and 4 → likeliness of H-abstraction contribution
- E_A and $\lg k_H$ of 4-Nitrophenol seems independent of the BDE (Fig.3 and 4) \rightarrow H-abstraction unlikely

- Rate constants of aromatics and benzoic acids with ΔG_R greater than -40 kJ mol-1 cannot be described by the Marcus-Theory \rightarrow maybe indication for an addition mechanism [1]
- Empirical correlation for para- and mono-substituted aromatics lg $k_{obs} \sim \Delta G_R$ was found:
- lg (k_{obs} [M⁻¹ s⁻¹]) = (8.4 ± 0.2) (8.4 ± 2) 10⁻³ · ΔG_R [kJ mol⁻¹] with n = 24; R² = 0.88

Conclusions

- Investigated Phenols react via mixed mechanisms with NO₃
- Possible contributions of different reaction mechanisms in Tab. 2
- Fast spectroscopic measurements that are able to identify first reaction intermediates and ab-initio calculations could determine exact mechanism

Compound	H-Atom abstraction at			Direct electron	Addition/	
Compound	Substituent		О-Н	transfer	Elimination	
4-Nitrophenol	NO_2		0	XX	Х	
4-Hydroxybenzoic acid	COO-H	0	Х	X	X	
4-Methylphenol	CH ₂ -H	Х	Х	X	X	
4-Aminophenol	NH_2 -H ⁺	XX	Х	X	X	
4-Methoxyphenol	OCH ₂ -H	0	Х	X	X	

References

- [1] H. Herrmann und R. Zellner in Alfassi, *N-centered radicals*, Wiley: New York, **1998**, 291
- [2] R.M.B. Dos Santos und J.A.M. Simoes, *J.Phys.Chem.Ref.Data*, **1998**, 27, 707
- [3] T. Umschlag et al., *Phys. Chem. Chem. Phys.*, **2002**, 4, 2975
- [4] H. Herrmann et al., *Faraday Discuss.*, **1995**, 100, 129
- [5] H. Herrmann, *Chem.Rev.*, **2003**, 103, 4691
- [6] P. Barzaghi und H. Herrmann, *Phys. Chem. Chem. Phys.*, **2004**, 4, 3669
- 7] C. Weller et al., **2005**, Poster, 6th Informal conference on atmospheric & molecular science, Helsingör