Atmospheric oxidation of α-pinene: characterisation of chemical and physical properties of aerosols in chamber experiments

Yoshiteru Iinuma, Olaf Böge, Konrad Müller, Thomas Gnauck, and Hartmut Herrmann

Institut für Troposphärenforschung, Leipzig, Germany

http://www.tropos.de/

Introduction

Various organic species are emitted to the atmosphere from vegetation, biogenic hydrocarbons, especially monoterpenes play an important role in the formation of secondary organic aerosols (SOA) emitted by their atmospheric oxidation. It has been estimated that they contribute a significant mass to the total aerosol mass in the troposphere, ranging from 30 to 270 Tg y⁻¹ [Andreae and Crutzen, 1997]. The identification and quantification of reaction products from the oxidation process of terpenes in the troposphere has been receiving much attention over the past two decades. More recently, the aerosol formation during the oxidation process of terpenes in the atmosphere has also been investigated [Pandis et al., 1992; Hoffmann et al., 1997]. Although this process is believed to be a major source of SOA in the troposphere only limited number of experiments have been carried out to understand the reaction mechanisms and the chemical composition of the produced aerosol [Greifstein et al., 1996; Winterhalter et al., 2001]. Therefore understanding the nature of these species in both gas and particle phase is essential and approaches assessing the climatic importance of these species.

Fig. 2: Example of aerosol mass and size distribution change as a function of time with seed aerosols, \( \Delta \), and without seed aerosols, \( \alpha \), in percentage.

Experimental Condition

Reactions were run in a 1.4 m³ Teflon reaction chamber. Figure 1 shows the experimental setup. The initial concentration of α-pinene was 58-94 ppbV. Ozone was produced by the photolysis of O₃ with Hg lamp and the concentration of ozone was ranged from 80-150 ppbV. The concentration of ozone was decreased by UV absorption at 254 nm. Ammonium sulfate seed aerosols were produced by a nebuliser and then dried with a diffusion dryer prior to the entering the chamber. A bipolar charge neutraliser was used to neutralise the dried seed aerosol. The size distributions of particles in the reaction chamber as a function of time were measured by a differential mobility particle sizer (DMPS) and a multi-channel differential mobility particle sizer (MC-DMPS). The seed aerosols and ozone are injected to the reaction chamber and mixed with a fan prior to the reaction with α-pinene. After defining the initial concentrations of ozone and seed aerosols, α-pinene was injected and mixed for further 5 minutes with a fan. The samples were collected on a PTFE filter (0.47 mm diameter, 1 mm prep filter). Samples were then injected to the instruments for CE/MS analysis. The samples were analysed with CE with an indirect UV method at 205 nm and with a mass spectrometer detector. A buffer system containing 3 mM pyromellitic acid/6 mM DETA/5% methanol at pH 8.6 was used for CE indirect UV method and 10 mM ammonium acetate/0.4% methanol at pH 9.1 with NH₄OH was used for CE/MS method. A fused silica capillary was used for both method with internal diameter of 75 µm and total length of 64.5 cm (collective length 88 cm) for CE indirect UV and internal diameter 90 µm and total length of 87 cm for CE/MS, respectively.

With seed aerosols

Without seed aerosols

Fig. 3: Example of aerosol mass and size distribution change as a function of time without seed aerosols. DMo is calculated from the change in aerosol size distribution.

Fig. 4: Typical electropherogram of a-pinene oxidation products

Fig. 5: Example of mass spectrum of a-pinene oxidation products (7 Feb. 2002)

Summary

In this study, some first results from chamber experiments for the characterisation of α-pinene ozone oxidation products in the particle phase are presented. Evolution of particles (\( \Delta \)M and \( \Delta \)dN/dlogDp) as a function of time are shown for both seeded and non-seeded experiments. Further experiments are planned in order to characterise aerosol formation and evolution from α-pinene oxidation. Oxidation products were analysed by CE and it is found that pinic acid and sepic acid to be major ionic species in the particle phase. CE provides a fast and sensitive analysis for the ionic fraction of α-pinene oxidation products and it will be coupled with MS for further product study.

Future work

- Characterisation of experimental parameter dependency of particle evolution (temperature, RH, concentration of α-pinene, ozone and seed aerosols)
- Determination of gas-particle phase partitioning ratio
- A new analytical method such as CE/MS
- Oxidation with SO₂ and NOₓ

Acknowledgements

Part of this project is supported by BMU within AFO2000 in the projects BWEA2000 and EFRE under contract 07A0273 and 07A041, respectively.

References

Andreae, M. O. and Crutzen, P. J., 1997: Atmospheric aerosols: biogeochemical source and role in atmospheric chemistry, Science, 276, 1042-1048


Fig. 1: Schematic diagram of the experimental setup

Fig. 2: Example of aerosol mass and size distribution change as a function of time with seed aerosols, DM, is calculated from the change in aerosol size distribution.

Results and discussion

Figure 2 and 3 shows examples of increased aerosol mass (AM) and size distribution change as a function of time with and without used aerosols, respectively. Increase in particle number, mass and mode diameter were observed shortly after α-pinene was injected for both with and without used aerosols case. In the presence of used aerosols, combination of organic vapour or newly formed ultrafine particles on the existing particles causes increase in particle size and mass. In a non-seeded aerosol experiment, burst nucleation forms a significant number of particles than following the growth of particle size and mass as a seeded experiment. A maximum to SM was reached about 3 hours after α-pinene injection for both cases. Particle size distributions for both cases were found similar, but showed rather different characteristics. Although no clear explanation can be given without further characterisation experiments, it may be due to the difference between number of SOA formed at the time of α-pinene injection and the speed of coagulation during the evolution of particles. Preliminary experimental results suggest AM is already influenced by the initial experimental parameter but no clear relationship between each experimental parameter was observed from the results and further experiments are needed in order to understand these data of AM and MMD.

Figure 4 shows a typical electropherogram. Only filter samples from experiments with seed aerosols were analyzed at this time. CE analysis showed that major were volatile ionic products in the particle phase were pinic acid followed by norpinic acid. The concentrations of pinic acid and norpinic acid in the particle phase for the experiments shown in Figure 2 were 4.82 and 1.35 µg/g, respectively. Figure 5 shows the mass spectrum of α-pinene oxidation products from the experiments shown in Figure 3. High sensitivity of MS allows us to detect pinornic acid in samples which is usually not found in CE indirect UV method.